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ABSTRACT
In modern auto vehicles we find dozens of Electronic Control Units
(ECUs) running several hundred MBs of code, alongside sophisti-
cated dashboards with integrated wireless communications. While
this technological advancement has brought upon a wide range
of advantages and integrated features, it also exposed the modern
vehicle to significant cyber threats, as documented in prior works.
Unfortunately, besides traditional cyber attacks, the security and
normal operation of the modern vehicle are nowadays exposed to a
different kind of threat. This is the tampering, which denotes a pro-
cedure that alters the vehicle’s behavior in order to gain particular
advantages (e.g., financial, operational). A fundamental distinction
between tampering and cyber attacks, is that tampering occurs
with the owner’s consent. This paper presents an approach for de-
tecting tampering within modern vehicles. The approach leverages
the advantages of sensitive hashing, namely the Exact Euclidean
Locality Sensitive Hashing (𝐸2𝐿𝑆𝐻 ) method. Experimental results
based on a dataset collected from the On-Board Diagnostics port
(OBD) of a Kia SOUL vehicle demonstrate the practical applicability
of the developed methodology.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malwaremitigation; • Information systems→Nearest-neighbor
search.
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Anomaly detection, locality sensitive hashing, controller area net-
works
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1 INTRODUCTION
The modern car has experienced profound changes in terms of its
internal technological ecosystem. Nowadays, we find dozens of
Electronic Control Units (ECUs) running several hundred MBs of
code, alongside sophisticated dashboards with integrated wireless
communications [2]. However, in the same vehicle we find the
underlying communication infrastructure, which is struggling to
keep up with the pace of these radical changes.

While this technological advancement has brought a wide range
of advantages and integrated features, it also exposed the modern
vehicle to significant cyber threats. To this end we find attackers
(e.g., vehicle owners, malicious actors) exploiting software vulnera-
bilities (or undocumented features) in order to alter the vehicle’s
behavior [25, 27]. Fortunately, nowadays, we also find a wide vari-
ety of techniques coming from the scientific community [5, 17, 28],
as well as from standardizing bodies [1], which aim to address the
lack of built-in security mechanisms within the modern car.

Unfortunately, besides traditional cyber attacks, the security
and normal operation of the modern vehicle are also exposed to
a different kind of threat. This is the tampering, which denotes a
procedure that alters the vehicle’s behavior in order to gain par-
ticular advantages (e.g., financial, operational). Compared to cyber
attacks, the purpose of tampering is not to cause specific damages,
but to alter the system’s behavior in order for the vehicle’s owner
to gain particular advantages. A fundamental distinction between
tampering and cyber attacks, is that tampering occurs with the
owner’s consent. Furthermore, tampering usually requires physical
access to the vehicle, as well as making profound changes to the
vehicle’s hardware (e.g., chip unsoldering, connecting hardware
emulators via altered communication ports). To this end, a partic-
ular example is the heavy-duty transport vehicle domain, where
frequent tampering is aimed at deactivating the NOx reduction
system in order to avoid costs for repairing of parts or the costs
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Figure 1: General architecture of the modern car with ECUs
and CAN frames.

of consumables (e.g., the AdBlue reagent), which are needed for
the system’s correct operation. However, these changes drastically
raise the amount of NOx emissions [16].

This paper presents an approach for detecting the tampering
within modern vehicles. The approach leverages the advantages
provided by sensitive hashing, namely the Exact Euclidean Locality
Sensitive Hashing (𝐸2𝐿𝑆𝐻 ) method. Introduced by P. Indyk in [9]
as a method for fast searching of similar objects with a high number
of characteristics, Locality Sensitive Hashing (LSH) can yield more
accurate results than the mainstream techniques documented in
prior works (e.g., Principle Component Analysis). Experimental
results based on a dataset collected from the On-Board Diagnos-
tics port (OBD) of a Kia SOUL vehicle [13] are used to validate
the developed methodology. These also demonstrate its superior
performance with respect to related techniques.

We believe that this work brings several major contributions,
including: (i) it presents a new approach for detecting tampering
based on the Exact Euclidean Locality Sensitive Hashing (𝐸2𝐿𝑆𝐻 ),
which distinguishes itself frommainstream techniques documented
in prior works; and (ii) it showcases the superior performance of
the developed technique with respect to techniques found in prior
works in the context of a dataset captured from a real vehicle.

The remainder of this paper is structured as follows. Section
2 provides an overview of related works. This is followed by a
detailed description of LSH and of the developed methodology in
Section 3. Experimental results and comparison to prior works are
described in Section 4. The paper concludes in Section 5.

2 BACKGROUND AND RELATEDWORK
2.1 Overview of the Modern Car’s Architecture
From an architectural point of view, the modern car comprises
dozens of embedded devices, also known as Electronic Control Units
(ECUs), which communicate with digital and/or analog sensors.

In today’s modern vehicles the “backbone” communication is
provided by the Controller Area Network (CAN). Standardised in
2003 [10], it is an International Standardization Organization (ISO)
- defined communications bus that describes the rules for exchang-
ing data frames between devices. Given its limitations mainly in

terms of bandwidth and payload size, recently, two main improved
communication infrastructures have been proposed. The CAN+
protocol was proposed by Ziermann, et al. in 2009 [29], and it ex-
ploits the time between transmissions to send additional data. More
recently, in 2012, Robert Bosch Gmbh developed the CAN with
flexible data-rate protocol (CAN-FD) [19], which brings several ad-
vantages over CAN and CAN+, amongst which the most significant
being higher bandwidth and larger payload.

An overview of this architecture is visualized in Fig. 1. However,
besides regular ECUs, the CAN bus can also transfer tampered
frames injected by malicious actors, which can profoundly alter
the behavior of ECU software. Therefore, an efficient approach is
required, which can be integrated into the modern vehicle in order
to detect tampering of sensitive data.

2.2 Related Work
Tampering is closely related to anomaly detection, if we consider
only the scenarios that do not cause parameter deviations outside
the normal functioning intervals. Therefore, in the remainder of this
section, an overview of anomaly detection techniques is provided,
which have been particularly developed for the automotive sector.

Groza and Murvay [6] developed an approach that focuses on
the number of Control Area Network (CAN) identifiers (CIDs),
their periodicity, and the entropy carried by the data-field associ-
ated to a particular CID. Based on a thorough analysis of a CAN
communication trace, a significant number of constant bits have
been identified. Consequently, the Hamming distance between two
messages from the same sender and CID was used to define the min-
imum entropy. As a result, the developed approach detects replay
and packet modification attacks (i.e., random changes of a packet’s
content).

Similarly to the work of Groza and Murvay, other researchers
have acknowledged that anomaly detection algorithms need to
be lightweight in order to be practically applicable to in-vehicle
systems. To this end, Stabili, et al. [24] proposed an anomaly detec-
tion algorithm for the CAN bus based on the Hamming distance
between the payloads of two consecutive CAN messages having
the same identifiers. Tests consisted of randomly generated payload
(fuzzing attack), as well as replay attacks. The results have shown
that the approach is applicable and exhibits good performances in
the case of messages with small Hamming distances. Otherwise, a
large number of false positives are generated.

In the same direction of lightweight detection algorithms we
mention the work of Cho and Shin [14]. Here, an anomaly detection
algorithm, called Clock-based detection system, was developed.
The developed algorithm was analyzed and later validated in the
context of three distinct classes of attacks: new data fabrication,
suspension, and masquerade. The approach essentially records the
message arrival timestamps, and exploits the periodic transmission
time of CAN messages for fingerprinting the transmitter ECUs.
Next, for each ECU, an estimation of the clock skew was computed,
which was then used as a fingerprint. Finally, the Cumulative Sum
(CUSUM) was integrated to detect packet injection, omission or
modification attacks.

In [15], Moore, et al. observed that CAN communications exhibit
a certain level of regularity in terms of the timing of CAN frames.
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Based on the identified communication patterns, a network-based
intrusion detection strategy was developed. The developed detec-
tion strategy measures the inter-signal wait times, and issues alerts
in case communications deviate from the apriorilly learned patterns.
As in the case of most existing works, a clean (i.e., disturbance-free)
dataset was used in the learning phase. A similar approach for
detecting intrusions in in-vehicle systems according to the packet
inter-arrival times (for the same CID) was documented by Sung, et
al. in [23].

Moving towards the direction of more complex algorithms, we
find the work of Narayanan, et al. [21]. The developed approach
embraces Hidden Markov Models (HMM) to learn offline the com-
munication patterns between ECUs. In a similar direction we find
the work of Theissler, et al. [26], where multivariate time series
were recorded and analyzed from a moving (on-road) vehicle.

In contrast to the above-mentioned studies, this work presents a
methodology aimed to detect tampering (or anomaly) attempts on
the data layer. An important observation is that in most of the cases
tampering does not affect communications, but it mainly impacts
the application layer, that is, the data transported by the underlying
communication system. While most prior works targeted the under-
lying communication system, this paper documents a methodology
aimed at the application layer. Besides this, while prior works in
other fields have mainly used traditional (i.e. mainstream) machine
learning algorithms, this work documents a different approach,
namely the Locality Sensitive Hashing (LSH) [4]. Compared to
other mainstream techniques (e.g., Principle Component Analysis
– PCA), LSH does not only have the ability to work with multi-
dimensional data (as the case of PCA), but, as demonstrated later
by the experimental results, it also exhibits a better accuracy in the
case of tampering.

3 DEVELOPED TAMPERING DETECTION
METHODOLOGY

At the center of the developed methodology is a technique aimed
at finding nearest neighbours in a high dimensional space. The
modern car contains hundreds of sensors, which can be accessed
in real-time via the On-board Diagnostic system (OBD). OBD de-
notes the vehicle’s self-diagnostic and reporting capability, which
also provides a standardized access interface and protocols for ac-
cessing sensor reports. Given the high data dimensionality, the
developed approach needs to build upon multi-dimensional algo-
rithms, namely the Exact Euclidean Locality Sensitive Hashing
(𝐸2𝐿𝑆𝐻 ) method.

The remainder of this section describes the building blocks of
𝐸2𝐿𝑆𝐻 , and its applications to tampering detection.

3.1 Locality Sensitive Hashing
Developed as an approximate nearest neighbors solution by P. Indyk
and later improved in [4], Locality Sensitive Hashing (LSH) is an
innovative method for solving the nearest neighbor problem with
the use of hashing. It is based on the premises that hashing points
that are closer together have a higher probability of collision, than
the points that are farther apart. Since it was first published, LSH
has been widely used in numerous fields and applications [7, 11, 12,
18, 20].

As an extension to LSH, the Euclidean Exact Locality Sensitive
Hashing [3],[22] (𝐸2𝐿𝑆𝐻 ) embraces the fundamental concept of
LSH, with the purpose of solving the 𝑅-near neighbor problem
in Euclidean space. Given a set of values 𝑉 (i.e., a set of measure-
ments captured via the OBD port) containing data points in a 𝑑-
dimensional space, for a given query point 𝑞 and a radius 𝑅, 𝐸2𝐿𝑆𝐻
returns a list of points for which the condition | |𝑣 − 𝑞 | |2 ≤ 𝑅 is
satisfied, where | |𝑣 −𝑞 | |2 is the Euclidean Distance between 𝑣 and 𝑞.
More specifically, 𝐸2𝐿𝑆𝐻 provides a list of points close to 𝑞 within
the radius 𝑅 with a probability of 1 - 𝛿 , where 𝛿 is the probability
that a point within 𝑅 distance to 𝑞 is not reported.

𝐸2𝐿𝑆𝐻 inherited from LSH its 𝑝-stable distribution. A distribu-
tion D over ℜ is called 𝑝-stable, if there exists 𝑝 ≥ 0 such that for
any𝑚 real numbers 𝑢1 ... 𝑢𝑚 , independently and identically dis-
tributed variables𝑋1 ...𝑋𝑚 with distributionD, the random variable∑
𝑖 𝑢𝑖𝑋𝑖 has the same distribution as the variable (∑𝑖 |𝑢𝑖 |𝑝 )1/𝑝𝑋 .

Here, 𝑋 is a random variable with distribution D [8].
According to the previously mentioned properties, the 𝐸2𝐿𝑆𝐻

structure is defined as a family of functions𝐺 = {𝑔1, ..., 𝑔𝐿}. Each
𝑔 ∈ 𝐺 is defined as 𝑔(𝑣) = (ℎ1 (𝑣), ..., ℎ𝑘 (𝑣)). Here, 𝑣 ∈ 𝑉 is the
𝑑-dimensional measurement that is stored in the 𝐸2𝐿𝑆𝐻 structure,
ℎ𝑖 is the hash function that is applied on each 𝑣 value, 𝑘 denotes the
number of hash functions, and 𝐿 denotes the number of 𝑔 functions.
For each 𝑔, a hash table of size 𝑛 is constructed. It should be noted
that, within the 𝐸2𝐿𝑆𝐻 structure, for each 𝑔 ∈ 𝐺 function, the
associated hash functions ℎ𝑖 are uniquely constructed (as defined
later in this section). In other words, for each pair of functions
𝑔,𝑔′ ∈ 𝐺 ,𝑔 ≠ 𝑔′, and the set of hash functionsH , andH ′ associated
to 𝑔, and 𝑔′, respectively, we have that H ∩H ′ = ∅.

In relation to each ℎ𝑖 , a 𝑡 function is introduced to compute the
hash table key for a given 𝑔:

𝑡 (ℎ1 (𝑣), ..., ℎ𝑘 (𝑣)) =
( 𝑘∑
𝑗=1

𝑟 𝑗ℎ 𝑗 (𝑣)
)

mod 𝑛, (1)

where 𝑟 𝑗 are random integers. Lastly, the hash functions ℎ𝑖 are
defined as:

ℎ𝑖 (𝑣) =
⌊
𝑥 · 𝑣 + 𝑏

𝑤

⌋
. (2)

Here, 𝑥 is a vector containing elements selected randomly from a
𝑝-stable distribution, 𝑏 is a real number uniformly selected from
the interval [0,𝑤], and𝑤 is the number of segments in which the
real line, containing the projection 𝑥 · 𝑣 , is divided into.

3.2 𝐸2𝐿𝑆𝐻 Parameter Selection
The number𝑘 of hash functionsℎ used by each𝑔, directly influences
the query running times. Therefore, choosing the optimum value
for 𝑘 is crucial for the performance of the algorithm. Following the
method described in [3] and [22] the value for 𝑘 is approximated
via the following steps. First, we estimate the value of 𝑇𝑐 , which
is the time needed to construct the 𝑔 functions and to retrieve
the approximate near neighbours for a query point 𝑞. Next, we
estimate the value of 𝑇𝑔 , which is the time needed to compute the
distances from the query point 𝑞 to all of its approximate near
neighbours. Given these two estimations, the best value for 𝑘 is the
value for which 𝑇𝑐 +𝑇𝑔 is minimal, thus 𝑘 should be chosen as a
mean optimization of all the query points.
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Figure 2: Simplified overview of the 𝐸2𝐿𝑆𝐻 query scheme.

Based on 𝑘 , the ideal number 𝐿 of 𝑔 functions is determined
according to the assumption that a query point will collide with an
existing data point with a probability of 𝑝𝑘 . Therefore, the proba-
bility that the query point fails to collide with a near neighbor for
all 𝑔𝑖 functions is equal to (1 − 𝑝𝑘 )𝐿 . As a result, a point colliding
with the query point with a probability of 𝛿 , can be expressed as
1 − (1 − 𝑝𝑘 )𝐿 ≥ 1 − 𝛿 . Consequently, the best value for 𝐿 is:

𝐿 =

⌈
log ( 1

𝛿
)

− log (1 − 𝑝𝑘 )

⌉
(3)

Finally, the 𝑅 parameter is computed in two steps. In the first
step, its minimum and maximum values (i.e., 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 ) are
obtained by sampling data points from the tamper-free dataset, and
by choosing 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 such that most of the sampled data
points have the nearest neighbor in the [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] interval. In
the second step, the optimal value for 𝑅 ∈ [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] is chosen
by querying a set of tampered points, and by selecting the best ratio
between the false-positive and false-negative rates.

3.3 Tampering Detection
The developed method for tampering detection leverages the pro-
prieties of the 𝐸2𝐿𝑆𝐻 scheme, namely, the high probability that
two points that are close to each other in Euclidean space hash to
the same value.

At first, the tamper-free data points are pre-processed by the
𝐸2𝐿𝑆𝐻 structure in order to group similar values under the same
buckets in each hash table. Accordingly, each 𝑔 first applies 𝑘 hash
functions ℎ1, ℎ2, ..., ℎ𝑘 on each 𝑣 from the dataset, resulting in a
series of hash values ℎ1 (𝑣), ℎ2 (𝑣), ..., ℎ𝑘 (𝑣). Next, 𝑡 is applied to
determine the hash key within the table 𝑔.

The procedure for determining if a given query point 𝑞 is tam-
pered or not is similar to the insertion process. First, for each 𝑔,
the points that collide under the same 𝑡 key value, are retrieved,
resulting in a list of points considered similar to 𝑞 by 𝐸2𝐿𝑆𝐻 . Then,
to further decide if measurement 𝑞 is tampered or not, for each
point under the bucket identified by 𝑡 , the Euclidean distance is
computed with 𝑞. The point 𝑞 is considered valid if at least one
point exists within 𝑅 distance. An overview of this procedure is
shown in Fig. 2.
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Figure 3: False Positive and False Negative Rate vs R.

4 EXPERIMENTAL ASSESSMENT
The experimental evaluation focuses on assessing the correctness
and applicability of Euclidean Exact Locality Sensitive Hashing
(𝐸2𝐿𝑆𝐻 ) in the context of detecting data tampering in auto vehicles.
Furthermore, the analysis focuses on the comparison with related
detection methods.

4.1 Dataset
The data used to validate the developed approach was provided
by the Hacking and Countermeasure Research Lab (HCRL) [13].
It comprises measurements collected from the On-Board Diagnos-
tics port of a Kia SOUL vehicle. Briefly, the set consists of 94000
items, each one having 51 features, recorded over a period of 23
hours from 10 different drivers. From this collection of features, 17
features were considered relevant in terms of detecting tampering
attempts, from which we mention: fuel consumption, engine speed,
and engine torque (the complete set of features is summarized in
Table 1). The dataset used for the construction of the 𝐸2𝐿𝑆𝐻 struc-
ture, denoted by 𝑆𝑙 , contains 7000 observations randomly selected
from 8 drivers. The query dataset, denoted by 𝑆𝑞 , contained all
remaining observations from the 2 drivers. Before constructing the
𝐸2𝐿𝑆𝐻 structure the dataset was normalized with respect to the
limits imposed for each of the selected features.
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Table 1: Description of the features used throughout the ex-
periments.

Feature Name Range Unit
Fuel consumption 0-10000 mcc

Accelerator pedal value 0-100 %
Throttle position signal 0-100 %
Intake air pressure 0-255 kPA

Absolute throttle position 0-100 %
Engine speed 0-6000 rpm

Torque of friction 0-100 %
Engine coolant temperature (-)40-(+)215 C

Engine torque 0-100 %
Calculated load value 0-100 %

Maximum indicated engine torque 0-100 %
Wheel velocity front left-hand 0-511.75 km/h
Wheel velocity rear right-hand 0-511.75 km/h
Wheel velocity front right-hand 0-511.75 km/h
Wheel velocity rear left-hand 0-511.75 km/h
Torque converter turbine speed 0-16383.75 rpm

Vehicle speed 0-200 km/h

4.2 Data Tampering
In order to generate tampered data, 2 distinct scenarios were con-
sidered. For each scenario, a subset 𝑆𝑡 containing 500 observations
were randomly selected from the query set 𝑆𝑞 . From 𝑆𝑡 , a total
number of 17 tampered datasets were created, where gradually, for
each dataset, an additional feature was tampered, starting from
the 1st until the 17th feature. For each feature 𝑥𝑖 the mean (`𝑥𝑖 )
and standard deviation (𝜎𝑥𝑖 ) values were estimated. Subsequently,
the tampered values were automatically computed by randomly
selecting values from specific (valid) intervals in two scenarios, as
follows:

• Scenario I: (`𝑥𝑖 + 3𝜎𝑥𝑖 , `𝑥𝑖 + 5𝜎𝑥𝑖 ).
• Scenario II: (`𝑥𝑖 ± 3𝜎𝑥𝑖 ,`𝑥𝑖 ± 5𝜎𝑥𝑖 ).

Lastly, according to Table 1, each tampered feature was bounded
to the normal parameter limits.

4.3 Parameter Computation
𝐸2𝐿𝑆𝐻 ’s parameters must be determined in relation to each specific
dataset. Namely, we need to determine the number 𝑘 of hash func-
tions ℎ𝑖 specific for each 𝑔, the number 𝐿 of 𝑔 functions, and the
radius𝑅. By following the procedure described earlier, the following
values were obtained: 𝑘 = 10, and 𝐿 = 55. To compute the optimal
value of 𝑅, the interval margins 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 were computed by
sampling random data-points from the dataset 𝑆𝑙 . Subsequently, the
optimal value for 𝑅 ∈ [𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 ] was calculated using MATLAB,
as shown in Fig. 3. The best result obtained for 𝑅 was of 0.08. Lastly,
𝛿 , the probability that a near neighbor is not found, was set to 10%,
meaning that the algorithm would report the near neighbors with
a 90% probability of success.

4.4 Experimental Results
In order for the reader to understand the impact of tampering
on the vehicle’s parameters, three samples, each one consisting
of three features are visualized in Fig. 4, 7, 10. Here, we observe
the correlation between the: fuel consumption, torque of friction,
and the engine’s coolant temperature (Fig. 4); engine torque, load
value, and engine torque (Fig. 7); and accelerator pedal, intake
air pressure, and torque of friction (Fig. 10). Next, we visualize
the same three features in the case of the two scenarios including
tampering. Accordingly, Fig. 5, 6, 8, 9, 11, 12 illustrate the same
three features in the case of Scenario I and II. Observe that in these
two scenarios the features exhibit clear changes from the original
dataset. Nevertheless, the parameter intervals are not exceeded. In
each figure previously mentioned, Fig. 4-12, the plotted points were
normalized with respect to the limits imposed by each feature (see
Table 1).

Next, we proceed to the analysis of the accuracy of the developed
methodology in terms of false positives and false negatives. The
analysis is also performed in the context of the popular technique
including Principle Component Analysis (PCA) alongside the use
of Gaussian Mixture Models (GMM). The later case was used by
prior studies [8] in the classification of anomalous behavior.

As mentioned earlier, the rate of false positives (FPR) and nega-
tives (FNR) is closely linked to the value of parameter 𝑅. To this end,
Fig. 3 shows the evolution of FPR and FNR. Since the value of 𝑅 was
set to 0.08, the recorded FPR is of 8.2% and of FNR is of 7.0%. As for
PCA+GMM the recorded FPR is of 59.4%. Moving forward, Fig. 13
and 14 showcase the rate of false negatives in comparison to PCA
and GMM. PCA provides a means to reduce the data dimensions,
while GMM is the clustering technique used to detect anomalous
behavior. As shown in these figures, we observe that PCA+GMM
leads to a significantly higher level of false negatives in both exper-
imental scenarios. Obviously, by increasing the number of features
that are affected by tampering, the accuracy of both techniques im-
proves. Nevertheless, the developed approach behaves significantly
better than PCA+GMM. This is owed to the fact that, by reducing
the dimensions, PCA also eliminates the slight parameter changes
that are critical for the detection of tampering.

5 CONCLUSIONS
This paper approached a new threat to automotive systems, namely
tampering, and presented a new approach for the detection of tam-
pering. The approach leverages the advantages provided by sensi-
tive hashing, namely the Exact Euclidean Locality Sensitive Hashing
(𝐸2𝐿𝑆𝐻 ) method. By using 𝐸2𝐿𝑆𝐻 , the developed methodology en-
capsulates the ability to tackle multi-dimensional data, to model
normal system behavior, and to detect abnormal (i.e., tampered)
measurements. In terms of experimental results, the dataset col-
lected from the On-Board Diagnostics port of a Kia SOUL vehicle
[13] demonstrated the applicability of the approach, and its superior
performance when compared to mainstream techniques such as
the ones documented in related works (e.g., Principle Component
Analysis, and Gaussian Mixture Models). As future work, we in-
tend to further refine the developed technique and to implement a
prototype within an auto vehicle.
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Figure 4: Tamper-free dataset (engine
coolant).
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Figure 5: Scenario I tampered dataset.
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Figure 6: Scenario II tampered dataset.
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Figure 7: Tamper-free dataset (engine
torque).

0
1

1

0.5

E
ng

in
e 

to
rq

ue
 [%

]

0.8
Calculated load value [%]

0.5

Maximum indicated engine torque [%]

1

0.6
0.4

0

Figure 8: Scenario I tampered dataset.
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Figure 9: Scenario II tampered dataset.
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Figure 10: Tamper-free dataset (accelera-
tor pedal).
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Figure 11: Scenario I tampered dataset.
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Figure 12: Scenario II tampered dataset.

6 ACKNOWLEDGMENTS
This work was funded by the European Union’s Horizon 2020 Re-
search and Innovation Programme throughDIAS project (https://dias-
project.com/ ) under Grant Agreement No. 814951. This document
reflects only the author’s view and the Agency is not responsible
for any use that may be made of the information it contains.

REFERENCES
[1] AUTOSAR. 2017. Specification of Secure Onboard Communication AUTOSAR

CP Release 4.3.1. AUTOSAR (2017).
[2] Riccardo Coppola and Maurizio Morisio. 2016. Connected Car: Technologies,

Issues, Future Trends. ACM Comput. Surv. 49, 3, Article 46 (Oct. 2016), 36 pages.

https://doi.org/10.1145/2971482
[3] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-

Sensitive Hashing Scheme Based on p-Stable Distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry (Brooklyn, New York,
USA) (SCG ’04). Association for Computing Machinery, New York, NY, USA,
253–262. https://doi.org/10.1145/997817.997857

[4] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 518–529.

[5] B. Groza and P. Murvay. 2018. Security Solutions for the Controller Area Network:
Bringing Authentication to In-Vehicle Networks. IEEE Vehicular Technology
Magazine 13, 1 (March 2018), 40–47. https://doi.org/10.1109/MVT.2017.2736344

[6] B. Groza and P. Murvay. 2019. Efficient Intrusion Detection With Bloom Filtering
in Controller Area Networks. IEEE Transactions on Information Forensics and

https://doi.org/10.1145/2971482
https://doi.org/10.1145/997817.997857
https://doi.org/10.1109/MVT.2017.2736344


Locality Sensitive Hashing for Tampering Detection in Automotive Systems Ares ’20, August 25–28, 2020, Dublin, Ireland

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of affected features

0

10

20

30

40

50

60

70

80

90

F
al

se
 N

eg
at

iv
e 

R
at

e 
[%

]

E2LSH
PCA + GMM

Figure 13: Accuracy of 𝐸2𝐿𝑆𝐻 in comparison with
PCA+GMM for Scenario I.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of affected features

0

10

20

30

40

50

60

70

80

90

F
al

se
 N

eg
at

iv
e 

R
at

e 
[%

]

E2LSH
PCA + GMM

Figure 14: Accuracy of 𝐸2𝐿𝑆𝐻 in comparison with
PCA+GMM for Scenario II.

Security 14, 4 (April 2019), 1037–1051. https://doi.org/10.1109/TIFS.2018.2869351
[7] Parisa Haghani, Sebastian Michel, and Karl Aberer. 2009. Distributed Similarity

Search in High Dimensions Using Locality Sensitive Hashing. In Proceedings of
the 12th International Conference on Extending Database Technology: Advances
in Database Technology (Saint Petersburg, Russia) (EDBT ’09). Association for
Computing Machinery, New York, NY, USA, 744–755. https://doi.org/10.1145/
1516360.1516446

[8] P. Indyk. 2000. Stable distributions, pseudorandom generators, embeddings and
data stream computation. In Proceedings 41st Annual Symposium on Foundations
of Computer Science. 189–197. https://doi.org/10.1109/SFCS.2000.892082

[9] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (Dallas, Texas, USA) (STOC ’98). Association
for Computing Machinery, New York, NY, USA, 604–613. https://doi.org/10.
1145/276698.276876

[10] ISO. 2003. ISO 11898-1:2003 - Road vehicles - Controller area network (CAN)
- Part 1: Data link layer and physical signalling. International Organization for
Standardization (2003).

[11] Hisashi Koga, Tetsuo Ishibashi, and Toshinori Watanabe. 2004. Fast Hierarchical
Clustering Algorithm Using Locality-Sensitive Hashing. In Discovery Science,
Einoshin Suzuki and Setsuo Arikawa (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 114–128.

[12] B. Kulis and K. Grauman. 2009. Kernelized locality-sensitive hashing for scalable
image search. In 2009 IEEE 12th International Conference on Computer Vision.
2130–2137. https://doi.org/10.1109/ICCV.2009.5459466

[13] Byung Il Kwak, Jiyoung Woo, and Huy Kang Kim. 2016. Know your master:
Driver Profiling-based Anti-theft method. In PST 2016.

[14] Kyong-Tak Cho and Kang G. Shin. 2016. Fingerprinting Electronic Control Units
for Vehicle Intrusion Detection. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 911–927. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/cho

[15] Michael R. Moore, Robert A. Bridges, Frank L. Combs, Michael S. Starr, and
Stacy J. Prowell. 2017. Modeling Inter-Signal Arrival Times for Accurate De-
tection of CAN Bus Signal Injection Attacks: A Data-Driven Approach to in-
Vehicle Intrusion Detection. In Proceedings of the 12th Annual Conference on
Cyber and Information Security Research (Oak Ridge, Tennessee, USA) (CISRC ’17).
Association for Computing Machinery, New York, NY, USA, Article 11, 4 pages.
https://doi.org/10.1145/3064814.3064816

[16] Denis Pöhler, Tim Adler, Chsristopher Krufczik, Martin Horbanski, Johannes
Lampel, and Ulrich Platt. 2017. Real Driving NOx Emissions of European Trucks
and Detection of Manipulated Emission Systems. In EGU General Assembly Con-
ference Abstracts (EGU General Assembly Conference Abstracts). 13991.

[17] Andreea-Ina Radu and Flavio D. Garcia. 2016. LeiA: A Lightweight Authentication
Protocol for CAN. In Computer Security – ESORICS 2016, Ioannis Askoxylakis,
Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows (Eds.). Springer
International Publishing, Cham, 283–300.

[18] Zeehasham Rasheed, Huzefa Rangwala, and Daniel Barbara. 2013. 16S rRNA
metagenome clustering and diversity estimation using locality sensitive hashing.
BMC systems biology 7 Suppl 4 (10 2013), S11. https://doi.org/10.1186/1752-0509-
7-S4-S11

[19] Robert Bosch Gmbh. 2012. CAN with flexible data-rate. Vector CANtech, Inc., MI,
USA, Specification Version 1.0 (2012).

[20] M. Ryynanen and A. Klapuri. 2008. Query by humming of midi and audio using
locality sensitive hashing. In 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing. 2249–2252. https://doi.org/10.1109/ICASSP.2008.
4518093

[21] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. 2016. OBD SecureAl-
ert: An Anomaly Detection System for Vehicles. In IEEE Workshop on Smart
Service Systems (SmartSys 2016).

[22] G. Shakhnarovich, T. Darrell, and P. Indyk. 2006. Locality-Sensitive Hashing Using
Stable Distributions. MITP, 61–72. https://ieeexplore.ieee.org/document/6282722

[23] H. M. Song, H. R. Kim, and H. K. Kim. 2016. Intrusion detection system based
on the analysis of time intervals of CAN messages for in-vehicle network. In
2016 International Conference on Information Networking (ICOIN). 63–68. https:
//doi.org/10.1109/ICOIN.2016.7427089

[24] Dario Stabili, Mirco Marchetti, and Michele Colajanni. 2017. Detecting attacks to
internal vehicle networks through Hamming distance. 1–6. https://doi.org/10.
23919/AEIT.2017.8240550

[25] Y. Takefuji. 2018. Connected Vehicle Security Vulnerabilities [Commentary].
IEEE Technology and Society Magazine 37, 1 (March 2018), 15–18. https://doi.org/
10.1109/MTS.2018.2795093

[26] Andreas Theissler. 2017. Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection. Knowledge-Based Systems 123
(2017), 163 – 173. https://doi.org/10.1016/j.knosys.2017.02.023

[27] C. Urquhart, X. Bellekens, C. Tachtatzis, R. Atkinson, H. Hindy, and A. Seeam.
2019. Cyber-Security Internals of a Skoda Octavia vRS: A Hands on Approach.
IEEE Access 7 (2019), 146057–146069. https://doi.org/10.1109/ACCESS.2019.
2943837

[28] A. Van Herrewege, D. Singelee, and I. Verbauwhede. 2011. CANAuth - A Simple,
Backward Compatible Broadcast Authentication Protocol for CAN bus. In ECRYPT
Workshop on Lightweight Cryptography 2011 (ECRYPT ’11). 1–7.

[29] T. Ziermann, S. Wildermann, and J. Teich. 2009. CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16× higher data
rates.. In 2009 Design, Automation Test in Europe Conference Exhibition. 1088–1093.
https://doi.org/10.1109/DATE.2009.5090826

https://doi.org/10.1109/TIFS.2018.2869351
https://doi.org/10.1145/1516360.1516446
https://doi.org/10.1145/1516360.1516446
https://doi.org/10.1109/SFCS.2000.892082
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1109/ICCV.2009.5459466
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/cho
https://doi.org/10.1145/3064814.3064816
https://doi.org/10.1186/1752-0509-7-S4-S11
https://doi.org/10.1186/1752-0509-7-S4-S11
https://doi.org/10.1109/ICASSP.2008.4518093
https://doi.org/10.1109/ICASSP.2008.4518093
https://ieeexplore.ieee.org/document/6282722
https://doi.org/10.1109/ICOIN.2016.7427089
https://doi.org/10.1109/ICOIN.2016.7427089
https://doi.org/10.23919/AEIT.2017.8240550
https://doi.org/10.23919/AEIT.2017.8240550
https://doi.org/10.1109/MTS.2018.2795093
https://doi.org/10.1109/MTS.2018.2795093
https://doi.org/10.1016/j.knosys.2017.02.023
https://doi.org/10.1109/ACCESS.2019.2943837
https://doi.org/10.1109/ACCESS.2019.2943837
https://doi.org/10.1109/DATE.2009.5090826

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Overview of the Modern Car's Architecture
	2.2 Related Work

	3 Developed Tampering Detection Methodology
	3.1 Locality Sensitive Hashing
	3.2 E2LSH Parameter Selection
	3.3 Tampering Detection

	4 Experimental Assessment
	4.1 Dataset
	4.2 Data Tampering
	4.3 Parameter Computation
	4.4 Experimental Results

	5 Conclusions
	6 Acknowledgments
	References

