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Abstract. Outlier detection in continuous nonlinear systems is essential
as the presence of outliers might be indicators of faults, diseases, cyber-
attacks, or system malfunctions. However, the complex nature of such
systems significantly increases the difficulty of developing outlier detec-
tion techniques. Due to the high complexity of such systems, accurate
model based approaches are often difficult to design. While supervised
outlier detection techniques yield great performance, the scarcity of la-
beled data motivates the necessity of unsupervised approaches. This pa-
per introduces a data-driven approach for unsupervised outlier detection,
which utilizes a hybrid combination of Autoencoders and One-Class Sup-
port Vector Machines. Experimental assessment was performed on the
Tennessee Eastman Process dataset, and the performance of the pro-
posed solution was measured using nine independent metrics, including
detection delay and, true and false positive rates. Furthermore, a com-
parison with other recent techniques was performed, with notable results
in terms of false alert rates and detection delay.

Keywords: Continuous nonlinear systems, outlier detection, fault de-
tection, autoencoders, MLP, RNN, LSTM, one-class support vector ma-
chines (OCSVM), Tennessee Eastman process

1 Introduction

Continuous nonlinear systems are prevalent and extensively utilized across a
diverse range of domains, including Physics [1], Engineering [2], Biology [3],
Medicine [4], Astronomy [5] and various other ones as well [6–8]. Monitoring
and identifying outliers in such systems is essential since the presence of out-
liers can serve as crucial indicators of various conditions, such as diseases [9],
system faults and malfunctions [10], cyberattacks, erroneous readings, and even
potential discoveries in new physics [11], depending on the specific context.

As illustrated by Aggarwal et al. [12] three primary methodologies are uti-
lized for detecting outliers: supervised, unsupervised, and semi-supervised. The
choice between these approaches depends on the availability of labeled data
and the selected detection models. In the supervised approach, classifiers are
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trained using both normal and anomalous data. In contrast, unsupervised tech-
niques do not rely on labeled anomalous data, presenting a more formidable
challenge in anomaly detection. Regarding semi-supervised approaches, they rep-
resent a middle ground between supervised and unsupervised methods. In semi-
supervised outlier detection, the algorithm leverages a combination of labeled
normal data and unlabeled data, which may include both normal and anoma-
lous instances [13]. Without loss of generality, the terms outlier and anomalous
point, or instance, will be used interchangeably. Similarly, the terms normal,
clean, outlier-free and inlier will denote an observation that falls within the
expected or typical range of values.

Detecting outliers in continuous nonlinear systems poses significant chal-
lenges due to the high complexity and the presence of nonlinear patterns and
relationships. The increased complexity makes the creation of accurate system
models challenging [14], particularly when employing a data-driven approach for
unsupervised outlier detection [15]. In such scenarios, linear models may not be
sufficient to capture the intricate relationships present in the data. Nonlinear
patterns may lead to deviations that are harder to identify using traditional
linear techniques [16]. As a result, specialized algorithms and techniques are re-
quired to handle the complexities of nonlinear outlier detection effectively [15].

This paper introduces a data-driven approach for unsupervised outlier de-
tection for continuous nonlinear systems. The proposed solution incorporates an
Autoencoder (AE) and a One-Class Support Vector Machine (OCSVM). The AE
is utilized for modeling the normal behavior of the system from data obtained
during normal operating conditions. Subsequently, the OCSVM is used for out-
lier detection in the reconstruction residuals provided by the AE. Furthermore,
this study presents and evaluates three different AE architectures based on Mul-
tilayer Perceptrons (MLP), Recurrent Neural Network (RNN) [17], and lastly,
on Long-Short Term Memory (LSTM) models [18]. The proposed outlier detec-
tion techniques are easily applicable with low overhead brought on by feature
selection methodologies. Additionally, these techniques function in multi-variate
settings as well.

The experimental assessment was performed on the Tennessee Eastman Pro-
cess (TEP) dataset [19]. The TEP is popular for being a reference complex
nonlinear system utilized in diverse challenges, including modeling, fault detec-
tion, fault analysis, and the design of control techniques. Outlier detection on
such systems is valuable for identifying system faults and malfunctions.

To achieve the optimal selection of hyperparameters for both the AE and the
OCSVMM, we employed a combination of manual and automatic hyperparame-
ter optimization techniques on the validation loss objective function. Addition-
ally, to measure the performance of the proposed outlier detection methodology,
nine distinct metrics are employed, including detection delay, false positive rate,
true positive rate and balanced accuracy score. Furthermore, the proposed de-
tection technique is compared to recent supervised [20] and unsupervised [21]
techniques, with promising results in terms of false alarm rates and detection
delays on both clean and anomalous datasets.
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The remainder of the paper is structured as follows. Section 2 provides a dis-
cussion on relevant related studies. This is followed by Section 3, which presents
the proposed outlier detection methodology. In Section 4, the experimental as-
sessment is described. The experimental results are showcased in the fifth section,
and finally, the paper concludes in Section 6.

2 Related Work

This section explores recent studies that are relevant to the current paper. It is
structured into three subsections, each addressing distinct aspects. The initial
subsection investigates recent and relevant studies that utilize AE and SVM for
outlier detection in various fields. The second subsection concentrates on studies
proposing detection strategies for nonlinear systems. Lastly, the third subsection
analyzes outlier detection techniques applied to the TEP dataset.

2.1 Autoencoder and One-Class SVM Outlier Detection

In a recent paper, Wei et al. [22] proposed an LSTM-Autoencoder based solu-
tion for outlier detection for indoor air quality monitoring systems. Their solu-
tion utilizes the AE to reconstruct a univariate time-series data containing CO2

readings measured in several schools. The Encoder takes as input a sequence of
t time-steps, where each time-step is treated as an indivi dual input, while the
decoder reconstructs the same sequence. This solution utilizes a threshold based
detection methodology, where the threshold is computed as the maximum value
of the reconstructed residuals on the training set. However, such an approach is
sensitive to outliers and selecting the maximum value might yield large threshold
values, making the solution inefficient to non-obvious outliers encountered dur-
ing inference. The authors addressed this issue by removing certain observations
from the training set, which is not considered a standard practice. Additionally,
this approach is not designed to function in multivariate settings.

Riberolles et al. [23] proposed a similar LSTM-Autoencoder based outlier
detection solution for multivariate time-series data originating from Industrial
Control Systems. Their proposed solution also utilizes a threshold based detec-
tion approach, where the threshold is set to a fixed value so that the majority of
the training residuals are below it. This thresholding method, as also identified
by the authors, is context specific. Selecting a higher value for the threshold
might yield poor detection results, while a lower value might increase the false
alert rate. Additionally, such an approach is not scalable, as each feature from the
multi-variate space is monitored individually, increasing the number of features
will increase the complexity. On the other hand, with a smaller set of inputs,
this method offers the benefit of pinpointing the cause of the anomaly, such as
the specific anomalous feature.

In a similar direction to our proposed solution, Said et al. [24] developed an
AE and OCSVM based solution, which was tested on a recent SDN Intrusion
Detection System dataset. Here, the authors experimented with two approaches.
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First, by setting a fixed threshold on the reconstruction residuals, as in the
previous paper. Second, training an additional OCSVM model using the latent
(e.g., compressed) data given by the encoder. Their results showed that the AE
with OCSVM yielded superior results compared to the thresholding method,
and even compared to utilizing only the OCSVM without the AE. An overall
of 18% and 22% increase in Precision was observed when utilizing the AE with
OCSVM approach compared to thresholding and OCSVM, respectively. Similar
differences in performance were also observed while using other metrics, such
as Recall, F1-score and Accuracy. While this approach further proves that such
methods are efficient for outlier detection tasks, the authors only experimented
with LSTM based AE. Additionally, the OCSVM model was trained and tested
with the latent representation of the data. In this compressed form, valuable
outlier information might be lost. Moreover, to enhance this solution with extra
capabilities, like identifying the feature responsible for the outlier, the inclusion
of a decoder would be necessary.

2.2 Nonlinear Systems Detection Approaches

Outlier detection in nonlinear systems has been addressed by several researchers’
in various domains [25–28].

Recently, Wanli et al. [27] proposed a tree-based ensemble methodology com-
bined with multivariate control charts for fault detection in centrifugal chillers,
namely on the ASHRAE-1043 dataset. Their extensive study analyses the de-
tection performance of various ensemble prediction methods, such as Random
Forest (RF), extreme gradient boosting (XGBoost) and light gradient boosting
machine (LightGBM) coupled with three multivariate control charts, namely
Hotelling’s T 2, multivariate cumulative sum (MCUSUM) and multivariate ex-
ponentially weighted moving average (MEWMA). Additionally, the authors com-
pare the prediction performance of the three models with Support Vector Re-
gression (SVR) models. This approach utilizes the tree-based ensembles to create
a model of a centrifugal chiller during normal operating conditions, and subse-
quently apply control charts as a means of monitoring the prediction residuals
of the system. The results of their study indicate that, on this specific dataset,
the tree-based ensembles can outperform SVR models. Moreover, in terms of
detection, their results highlight that MEWMA yields the best results, with a
1.2% false alert rate and an average detection rate of 88.71%. However, while the
tree-based ensembles exhibit a great performance, the authors don’t address the
shortcoming of the multivariate control charts. All the multivariate control charts
utilize the inverse covariance matrix in the computation process. As identified
by others, the covariance matrix is not always invertible [29,30]. Mathematically,
the existence of the inverse covariance matrix is limited by multiple conditions,
such as: the matrix must be positive definite [31], and non-singular [32]. Assuring
the existence of the inverse covariance matrix thus requires overhead brought on
by carefully selecting the monitored variables, even so, such methods might not
always be applicable.
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Tan et al. in [26] proposed an LSTM based anomaly detection system for
nonlinear dynamic systems. Their solution involves modeling the nonlinear sys-
tem using an LSTM, and detecting the changes in the mean, standard deviation
and slope values of the predicted output values given by the model, using a
sliding window technique. In terms of accuracy scores, the solution yields scores
of up to 99.5%. However, the proposed outlier detection solution is applied to
a univariate self generated dataset while no architectural information about the
model are supplied, nor is the dataset available.

2.3 TEP Outlier Detection Solutions

The TEP serves as a prominent reference environment for testing and evaluating
various approaches in domains such as outlier detection [33], fault diagnosis
[34], and performance optimization [35]. In this subsection, recent outlier and
fault detection approaches are presented. The outlier detection methods applied
on this dataset are specifically addressing fault detection. Nonetheless, fault
detection is a specific application of outlier detection.

In the work of Hu et al. [36] the authors introduce a novel supervised method
called the ”kernel limit learning machine”. Initially they employ eXtreme Gra-
dient Boosting to compress the features, and subsequently, they utilize a failure
classifier in conjunction with adjusted network hyperparameters. As reported
by the authors, their proposed approach demonstrates an impressive average
detection rate of 91%.

Avinash and Ajaya [20] proposed Gaussian Process Regression (GPR) based
detection approach for the TEP. Additionally, this paper also investigates the
effect of GPR hyperparameters, such as the covariance and mean functions,
influence the detection performance. The tested covariance functions include
squared exponential and the matern function, while the tested mean function
include the zero, constant, sum and polynomial functions. While the authors
obtained notable results in terms of fault detection rates and detection delays, the
false alarm rate were high, averaging 20.20%. However, the authors attributed
the high false alert rate to the low detection threshold value.

Moving on to SVM based detection approaches, we find the work of Onel et
al. [21]. In this paper, the authors proposed a two-class SVM method for out-
lier detection, together with a feature selection methodology based on nonlinear
Kernel-dependent SVM feature rank criteria, This feature selection methodology
is derived from the sensitivity analysis of the dual C-SVM objective functions.
The authors utilized five performance metrics, including the detection delay.
Their results indicate that the SVM classifier is capable of detecting numerous
faults, with great accuracy. Nonetheless, in certain scenarios their proposed ap-
proach yields a high false alert rate, upwards of 50%. Their detection delay is
also high, on the hard to detect faults 3 and 15, with measured delays reaching
500 and 800 samples.

Deep learning methods have also been utilized towards fault detection on
the TEP. Lomov et al. [37] investigated the fault detection capabilities of a wide
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range of deep Recurrent and Convolutional Neural Network classifiers. The stud-
ied classifiers include Gated Recurrent Units (GRUs), LSTMs and Transformers,
with and without attention mechanisms, for all the tested models. Additionally, a
Generative Adversarial Network (GAN) is introduced to enrich and extend the
existing training dataset. The experimental assessment is performed using 60
and 800 sequence lengths, and only on the faulty 800 data points for each faulty
scenario. Their results show outstanding performance with a sequence length of
800, with detection rates up to 100% on almost all the faulty datasets, and by
almost all the tested models. Using a sequence length of 60 the detection rates
are lower, ranging from 47% up to 100%. While the results are promising, realis-
tically, considering that the measurement frequency is 3 minutes, the detection
time would be once every 40 hours for sequences of 800 and once every 3 hours
for sequence lengths of 60. Moreover, as also stated by the authors, in measuring
the detection delay, only the simulation runs that were correctly predicted were
considered. Any simulation runs that were not detected with the correct class
were not included in the calculation of the detection delay. This often resulting
in conflicting results, with large detection delays but with 100% detection rate.

Similarly, Heo and Lee [38] proposed a deep MLP classifier for fault detection
in the TEP. In their study, the authors did not include Faults 3,9 and 15, which
are considered difficult to detect due to the absence of observable change in
the mean and variance of the signals. Their proposed solution yielded notable
results, with detection rates ranging from 93% to 100% on 17 faults. While
their proposed classifiers, as well as the ones from the previous studies, showed
remarkable results, we have to consider the fact that all the models were trained
using both clean and faulty data. Specifically, these classifiers are compelled to
detect only learned faults. Moreover, in real-life scenarios it is often difficult
to generate faulty data, covering all the possible faults or scenarios, especially
considering, for this specific scenario, that this would imply shutting down or
altering the functionality of a real chemical plant.

3 Proposed Outlier Detection Solution

The following is a broad overview of the components included in the proposed
outlier detection methodology. The methodology comprises several components
that work together to detect outliers. These components are as follows:

Autoencoder : An AE is used to reconstruct input signals. It takes the input
data and generates reconstructed signals at each time step. The AE learns to
compress and then reconstruct the input, capturing the underlying patterns and
features of the data.

Reconstruction Residuals: From the reconstructed signals, the methodology
computes the reconstruction residuals. These residuals represent the differences
between the original input signals and their corresponding reconstructions. They
capture the errors in the reconstruction process.

One-Class SVM : The OCSVM is a machine learning algorithm used for
outlier detection. It treats the data points as high-dimensional points, where
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each dimension corresponds to a reconstruction residual for an input signal. The
OCSVM is trained on normal data points and learns to distinguish between nor-
mal and outlier instances based on their representation in the high-dimensional
space.

Outlier Decision: When a new data point (e.g., reconstruction residual) is
provided to the OCSVM, it evaluates the binary decision whether it is classi-
fied as a normal point or as an outlier. The decision is based on the learned
representation of normal data points and the distance of the new point in the
high-dimensional space.

Fig. 1 illustrates an overview of the proposed method, including the three
AE variants, and the OCSVM. While this detection methodology is categorized
as unsupervised outlier detection, there is a training process, where both the
AE and the OCSVM model are trained using only clean, outlier free, data.
The AE is trained using the selected training dataset, containing real measured
values, while the OCSVM is trained on the reconstruction residuals over the
same training dataset.

Normal
Outlier

Decision

OCSVMEncoder Decoder

MLP
LSTM
RNN

X X X - X

Input Reconstructed
input

Residuals

Compressed
input 

Fig. 1. Illustration of the proposed unsupervised outlier detection method which in-
cludes the three AE variants and the OCSVM.

The following subsections provide a broad overview of the major components
included in the detection methodology.

3.1 Autoencoders

An AE is described as an artificial neural network that has the ability to repro-
duce an m-dimensional input vector Xm by generating an m-dimensional output
vector X̄m. The network is designed to learn an efficient representation of the
input data by compressing it into a lower-dimensional latent space and then
reconstructing it back to its original dimensionality [17].

The AE consists of two main parts: an Encoder and a Decoder. The Encoder
takes the input vector Xm and maps it to a lower-dimensional latent space rep-
resentation Ld, with d < m. This latent representation captures the essential
features and patterns of the input data. The Decoder, on the other hand, takes
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the latent representation Ld and maps it back to the original input dimension-
ality, generating the reconstructed output vector X̄m. The goal of the AE is to
minimize the reconstruction error between the original input vector X and its
reconstructed output X̄m during the training process.

The two components of the AE, namely the Encoder and the Decoder, can be
formally defined as the following two functions, f : Rm −→ Rd and g : Rd −→ Rm.
A general form of the objective function of the AE can be defined as follows:

argminf,g||X − g(f(X))||22. (1)

The scope here is to approximate the function that minimizes the error between
the input Xm and the output X̄m, where X̄m = g(f(Xm)). The general form
of the mapping relationship, during encoding and decoding, is defined as Ld =
h(WXm+B1) and X̄m = h(ULd+B2). Here, W,U ∈ Rmxd are weight matrices,
B1 and B2 are the biases, and h represents the activation function.

3.2 Autoencoder Architecture

As previously mentioned, the proposed AE architecture consists of three different
variants: MLP, RNN and LSTM, each utilizing different basic units.

The MLP architecture is a feed-forward neural network comprised of mul-
tiple layers. It takes the input data and processes it through a series of fully
connected layers. Each layer consists of neurons that compute weighted sums of
their inputs, apply an activation function, and pass the output to the next layer.
This architecture is suitable for capturing nonlinear relationships in the data.
Additional information on the MLP architecture can be obtained in [17].

The vanilla RNN architectures also operate on sequential data having a single
recurrent connection that allows information to be passed from one time-step
to the next. They can maintain an internal state or memory, which enables
them to process sequences of variable lengths. However, traditional RNNs may
suffer from vanishing/exploding gradient issues when processing long sequences.
Additional information about RNN architectures are presented in [17].

The LSTM architecture is a type of RNN that incorporates memory cells
and gates to better handle sequential data. It can retain information over longer
sequences and alleviate the vanishing/exploding gradient problem. LSTM units
contain memory cells that can store and retrieve information, as well as gates
that control the flow of information. This architecture is effective for capturing
dependencies in time-series or sequential data. Additional information on the
LSTM units, architecture, and the gating mechanism can be obtained in [17,18].

3.3 One-Class Support Vector Machines

In the literature, two main approaches proposing OCSVM are identified, namely
the work of Scholkopf et al. [39] and the work of Tax et al. [40]. This paper will
utilize the implementation of the former. The OCSVM algorithm, as proposed
by Scholkopf et al. in [39] consists of an adaptation of the two class Support
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Vector Machine (SVM) [41] to a one class problem. Specifically, for the OCSVM
the training data is enclosed in a single class and the algorithm can either classify
new data as inliers (e.g., in the same class as the training data) or as outliers
(e.g., outside the learned class). In short, during training, the OCSVM maps the
input data to higher dimensional feature space by the use of kernel functions and
approximates a decision boundary around the first (and only) class, separating
the data points from the origin. During detection, a given data point is considered
an outlier if it falls below the hyper-plane and closer to the origin.

Specifically, let ei ∈ Rm represent the reconstruction residuals, computed
as the difference Xm − X̄m, i takes values from 1 to n, where n represents
the size of the training set, and m represents the dimensionality of the input
space, namely the number of features. Let Φ(ei) denote a mapping function that
transforms ei to a high dimensional feature space F generated by the kernel
k(ei, ej) . The OCSVM algorithm identifies a hyperplane in the kernel space,
separating the data points from the origin with a maximum margin. To handle
the case where such a hyperplane doesn’t exist, a set of slack variables ξi are
introduced, which allows some points to fall within the margin (e.g., outliers).
Additionally, a parameter ν ∈ (0, 1] is introduced, as an upper bound on the
fraction of outliers in the training data.

To separate the data points from the origin, the following quadratic program
is solved:

min
w,ξ,ρ

1

2
||w||2 + 1

νn

n∑
i=1

ξi − ρ,

s.t. ⟨w,Φ(ei)⟩ ≥ ρ− ξi, ξi ≥ 0, (2)

here, w denotes the norm perpendicular to the hyperplane and ρ denotes the
margin. The decision function, further denoted as γ(en), which determines if a
new datapoint en belongs to the estimated set, is defined as follows:

γ(en) = sign(⟨w,Φ(en)⟩ − ρ). (3)

If the function γ yields a negative value for a newly introduced point en, it is
classified as an outlier; otherwise, it is categorized as normal.

As stated by numerous authors [42, 43], in practice the Gaussian kernel is
usually chosen. The Gaussian kernel, with a width parameter σ, is defined as:

k(ei, ej) = exp

(
−||ei − ej ||2

2σ2

)
. (4)

Additional information about SVMs and OCSVMs can be found in [39–41].

4 Experimental Assessment

The proposed approaches were implemented in Python, utilizing several libraries
such as Keras [44] with the TensorFlow back-end [45], as well as Scikit-learn [46].
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The implementation was carried out on a Lenovo Legion laptop featuring an
AMD Ryzen 5 5600H CPU, 32 GB DDR4 RAM, running the Windows 10 PRO
operating system. Three repetitions of each experiment were conducted, and
the results showcased in the subsequent section represent the average outcome
obtained from these three executions.

In what follows, the dataset used for the experimental assessment is pre-
sented, as well as the performance metrics, architecture, and hyperparameter
values selected for each model.

4.1 Dataset Description

First introduced in 1992 by Downs and Vogel [19], the TEP serves as a represen-
tation of an industrial chemical process. Its primary objective is to facilitate the
exploration, design, and evaluation of process control technologies. Comprised
of key units including the product condenser, separator, compressor, and prod-
uct stripper, the TEP produces two liquid products and two byproducts from
a combination of four reactants. Within this process, the chemical reactions are
irreversible and exothermic, with their rates being influenced by temperature.
The initial paper provides details on a model featuring a total of 52 measure-
ments, with 41 measurements pertaining to process variables and the remaining
11 to manipulated variables.

While the TEP is an industrial process, it’s also a complex continuous non-
linear system describable by differential equations. As identified by Jockenhövel
et al. [35] and by Ricker and Lee [47], this complex nonlinear system is described
by 30 differential equations, 149 algebraic equations, 160 algebraic variables, 11
control variables and 26 states.

The TEP dataset has found extensive application in various research studies,
covering areas such as plant-wide control strategy design, multivariate control
analysis, educational purposes, anomaly detection, and fault diagnosis. Further-
more, the dataset is publicly accessible [48]. This dataset comprises both clean
and anomalous subsets. The anomalous datasets include 20 system faults on
several components. By introducing faults into the TEP dataset, abnormal op-
erating conditions or equipment malfunctions can be simulated. Malfunctions
that may occur in real-world systems. These faults can include deviations in
process variables, manipulated variables, or abnormal behavior in the chemical
reactions within the TEP.

The training subset consists of 500 simulations, where each simulation en-
compasses 500 observations, leading to a total of 250,000 observations. In each
simulation, variables were sampled at intervals of 3 minutes, and the simulations
ran for a duration of 25 hours in the case of the training subset. Conversely, for
the testing clean subsets the simulation ran for 48 hours, comprising 500 simu-
lations with 960 observations per simulation, resulting in a total of 480,000 data
points. Each subset contains 55 columns, encompassing 52 variables, the simula-
tion number, the sample number, and an additional column for supplementary
information.
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The anomalous datasets consist of also 500 simulations, where each simu-
lation comprises 960 observations. Each fault is introduced after the 160th ob-
servation and is active for the next 800 observations. In what follows, the 20
anomalous datasets, which encompass the 20 faults, will be denoted as F1 to
F20. A recent study [49] discusses the nature of the faults in the TEP dataset
and the effects they have on the product quality control within the plant. The
authors identified 9 faults (i.e., 1, 2, 5–8, 10, 12 and 13) as quality-related faults,
and 5 faults (i.e., 3, 4, 9, 11 and 15) as quality-unrelated faults. This paper
considers all the available faults.

For the experimental assessment, namely for training the models, 20 clean
simulations were selected from the training set, containing 10,000 observations
in total. For validation purposes 1,000 data points were selected, representing
2 simulations. For outlier detection purposes, the entire testing datasets were
used, namely, 480,000 data points for the clean testing set and for each sub-
sequent anomalous dataset. As the proposed outlier detection techniques are
unsupervised approaches, only clean data was used for training the models. For
a comprehensive list of variables, faults and additional information, please refer
to the original TEP paper [19].

The datasets used in the experimental assessment were normalized using the
feature scaling method, where all the features were scaled in the [0,1] range,
using the maximum and minimum value from the training dataset [50].

4.2 Architectures

To achieve the optimal selection of hyperparameters for both the AE and the
OCSVMM, we employed a combination of manual and automatic hyperparam-
eter optimization techniques on the validation loss objective function

To ovoid overfitting the models to the training data, an early stopping [17]
approach was utilized, with the patience parameter set to five epochs. For the
LSTM and RNN architectures, a fully connected output layer was introduced,
with the same number of units as the input layer. The complete list of the
selected hyperparameters used for the experimental assessment are summarized
in Table 1.

4.3 Performance Metrics

For a thorough investigation of the detection performance, nine metrics were
utilized, namely True Negative Rate (TNR), False Positive Rate (FPR), True
Positive Rate (TPR), False Negative Rate (FNR), Accuracy (ACC), Precision
(PRC), F1 score (F1), Balanced Accuracy (BACC), and Detection Delay (DD).

– TNR. The proportion of correctly classified negative observations out of all
the true negative observations.

TNR =
TN

TN + FP
. (5)
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Autoencoder OCSVM

MLP LSTM RNN

Activation Relu Sigm/Tanh Tanh -

Batch Size 32 -

Bias Initializers Zeroes -

Early Stopping Patience 5 -

Hidden Size [32, 16, 16, 32] -

Input/Output Size 52 -

Kernel - - - Gaussian

Learning Rate 0.005 0.013 0.002 -

Maximum Training Epochs 100 no limit

ν - - - 0.00001

Optimizer Adam [51] -

Training Sequence - 40 40 -

Weight Initializers Glorot (Xavier) [52] -

Table 1. The selected AE and OCSVM hyperparameter values utilized in the ex-
perimental assessment. In this table, Sigm denotes the Sigmoid activation [53], Tanh
denotes the Hyperbolic tangent activation [54], and Relu represents the Rectified linear
unit activation [55].

– TPR. The proportion of correctly identified positive observations out of all
the true positive observations. In fault detection approaches, this is often
called Fault Detection Rate (FDR).

TPR =
TP

TP + FN
. (6)

– FPR. The number of negative observations misclassified as positive obser-
vations. In fault detection approaches, this is often called False Alarm Rate
(FAR).

FPR =
FP

FP + TN
= 1− TNR. (7)

– FNR. The number of positive observations misclassified as negatives obser-
vations.

FNR =
FN

FN + TP
. (8)

– ACC. The ratio between the correctly identified observations to the total
observations.

ACC =
TP + TN

TP + TN + FP + FN
. (9)
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– PRC. The proportion of correctly classified positive observations out of all
the predicted positive observations.

PRC =
TP

TP + FP
. (10)

– F1. The harmonic mean of PRC and TPR. It serves as a statistical measure
of the accuracy of a test or a model, taking into account both PRC and TPR
simultaneously.

F1 =
2 ∗ PRC ∗ TPR

PRC + TPR
. (11)

– BACC. Balanced accuracy is expressed as the average of the TPR and TNR.
This metric is particularly useful for imbalanced classes, as it is the case for
the anomalous datasets from the experimental assessment.

BACC =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
. (12)

– DD. The median delay (e.g., number of elapsed samples) between the ap-
pearance of outliers and the first generated alert by the detection solution,
specifically, the detection speed. In the case of the clean testing dataset, DD
measures the delay until the first false alert is generated. A DD value of one
indicates instantaneous detection.

The above metrics are dependent on the following: True Positives (TP), which
represent the accurate detection of positive observations. True Negatives (TN)
denote the correct identification of negative values. On the other hand, False
Negatives (FN) indicate the erroneous classification of negative values as pos-
itive, False Positives (FP) refer to the misclassification of negative values as
positive. In this study, the positive class signifies the anomalous observations,
while the negative class represents the clean, outlier-free, observations.

5 Experimental Results

The results of the experimental assessment for the three tested architectures are
illustrated in Tables 2, 4 and 3. It is important to mention that the results were
not rounded upwards or downwards. The precision and accuracy of the reported
results were maintained without any manipulation to ensure the integrity of the
findings.

As shown in the three tables, the MLP based methodology obtained the
overall best results, followed by the LSTM based architecture, while the worst
results were obtained by the RNN based solution.

On the clean testing dataset,in terms of FPR, the LSTM based solution
yielded the best results with an overall score of 0.0049 with the first false alert
generated after 171 samples, followed by the RNN approach with 0.0051 with
the first false alert after 164 samples, and the MLP based solution with an FPR
of 0.0090 with the first false alert generated after the 74th sample.
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Detection Results MLP Autoencoder

TNR FPR TPR FNR ACC PRC F1 BACC DD

Clean 0.9909 0.0090 - - - - - - 74

F1 0.9899 0.0100 0.9962 0.0037 0.9951 0.9979 0.9970 0.9930 2

F2 0.9899 0.0100 0.9874 0.0125 0.9878 0.9979 0.9926 0.9886 10

F3 0.9899 0.0100 0.0145 0.9854 0.1770 0.8779 0.0285 0.5022 70

F4 0.9899 0.0100 0.7667 0.2332 0.8039 0.9973 0.8669 0.8783 1

F5 0.9899 0.0100 0.2339 0.7660 0.3599 0.9914 0.3786 0.6119 1

F6 0.9899 0.0100 1.0 0.0 0.9983 0.9979 0.9989 0.9949 1

F7 0.9899 0.0100 1.0 0.0 0.9983 0.9979 0.9989 0.9949 1

F8 0.9899 0.0100 0.9725 0.0274 0.9754 0.9979 0.9850 0.9812 17

F9 0.9899 0.0100 0.0149 0.9850 0.1774 0.8813 0.0294 0.5024 71

F10 0.9899 0.0100 0.2156 0.7843 0.3447 0.9907 0.3542 0.6027 42

F11 0.9899 0.0100 0.6089 0.3910 0.6724 0.9966 0.7560 0.7994 10

F12 0.9899 0.0100 0.9817 0.0182 0.9830 0.9979 0.9897 0.9858 6

F13 0.9899 0.0100 0.9439 0.0560 0.9515 0.9978 0.9701 0.9669 34

F14 0.9899 0.0100 0.9992 0.0007 0.9976 0.9979 0.9986 0.9945 1

F15 0.9899 0.0100 0.0166 0.9833 0.1788 0.8918 0.0326 0.5032 65

F16 0.9899 0.0100 0.1092 0.8907 0.2560 0.9818 0.1966 0.5495 37

F17 0.9899 0.0100 0.8554 0.1445 0.8778 0.9976 0.9210 0.9226 25

F18 0.9899 0.0100 0.9330 0.0669 0.9425 0.9978 0.9643 0.9614 38

F19 0.9899 0.0100 0.1182 0.8817 0.2635 0.9832 0.2110 0.5540 8

F20 0.9899 0.0100 0.4163 0.5836 0.5119 0.9951 0.5871 0.7031 39

Table 2. Illustration of the detection results on the clean and the 20 anomalous
datasets using the MLP based autoencoder. The clean dataset doesn’t contain anoma-
lous points, thus only the TNR and FPR are shown. Additionally, the anomalous
datasets contain both clean and anomalous data points.

All the tested solutions obtained the best scores on the F1, F2, F4, F8,
F11, F12, F13, F14, F17, F18 and F20 anomalous datasets, and encountered
difficulties on the F3, F9, F15 and F19 datasets. However, out of the three
architectures, the MLP AE obtained the best scores for these four datasets. As
highlighted in [38], the detection of F3, F9 and F15 is particularly challenging
because there is no observable change in the mean, variance, and higher-order
variances of the signals. Moreover, a recent study [49] discusses the nature of
the faults in the TEP dataset and the effects they have on the product quality
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Detection Results RNN Autoencoder

TNR FPR TPR FNR ACC PRC REC F1 BACC DD

Clean 0.9948 0.0051 - - - - - - - 164

F1 0.9979 0.0020 0.9936 0.0063 0.9943 0.9995 0.9936 0.9966 0.9958 1

F2 0.9979 0.0020 0.9812 0.0187 0.9840 0.9995 0.9812 0.9903 0.9896 14

F3 0.9979 0.0020 0.0058 0.9941 0.1712 0.9360 0.0058 0.0117 0.5019 280

F4 0.9979 0.0020 0.1175 0.8824 0.2642 0.9965 0.1175 0.2103 0.5577 5

F5 0.9979 0.0020 0.2298 0.7701 0.3578 0.9982 0.2298 0.3736 0.6139 2

F6 0.9979 0.0020 1.0 0.0 0.9996 0.9995 1.0 0.9997 0.9989 1

F7 0.9979 0.0020 1.0 0.0 0.9996 0.9995 1.0 0.9997 0.9989 1

F8 0.9979 0.0020 0.9644 0.0355 0.9700 0.9995 0.9644 0.9817 0.9812 16

F9 0.9979 0.0020 0.0062 0.9937 0.1715 0.9394 0.0062 0.0124 0.5021 281

F10 0.9979 0.0020 0.2154 0.7845 0.3458 0.9981 0.2154 0.3543 0.6067 100

F11 0.9979 0.0020 0.3218 0.6781 0.4345 0.9987 0.3218 0.4868 0.6599 8

F12 0.9979 0.0020 0.9743 0.0256 0.9782 0.9995 0.9743 0.9867 0.9861 7

F13 0.9979 0.0020 0.9373 0.0626 0.9474 0.9995 0.9373 0.9674 0.9676 40

F14 0.9979 0.0020 0.9984 0.0015 0.9983 0.9995 0.9984 0.9990 0.9982 2

F15 0.9979 0.0020 0.0074 0.9925 0.1725 0.9489 0.0074 0.0148 0.5027 275

F16 0.9979 0.0020 0.0651 0.9348 0.2206 0.9938 0.0651 0.1223 0.5315 113

F17 0.9979 0.0020 0.7761 0.2238 0.8131 0.9994 0.7761 0.8737 0.8870 32

F18 0.9979 0.0020 0.9259 0.0740 0.9379 0.9995 0.9259 0.9613 0.9619 45

F19 0.9979 0.0020 0.0147 0.9852 0.1785 0.9733 0.0147 0.0289 0.5063 94

F20 0.9979 0.0020 0.2967 0.7032 0.4136 0.9986 0.2967 0.4575 0.6473 44

Table 3. Illustration of the detection results on the clean and the 20 anomalous
datasets using the RNN based autoencoder. The clean dataset doesn’t contain anoma-
lous points, thus only the TNR and FPR are shown. Additionally, the anomalous
datasets contain both clean and anomalous data points.

control within the plant, The authors identifying 9 faults (i.e., F1, F2, F5-F8,
F10, F12 and F13) as quality-related faults, and 5 faults (i.e., F3, F4, F9, F11
and F15) as quality-unrelated faults.

In terms of detection speed, the overall shortest delay times were obtained by
the MLP approach, with instantaneous detection on the F4, F5, F6, F7 and F14
faulty datasets. The slowest detection was obtained on F15 with a DD value of
65 samples. The recurrent based approaches yielded overall worst results, with
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Detection Results LSTM Autoencoder

TNR FPR TPR FNR ACC PRC REC F1 BACC DD

Clean 0.9950 0.0049 - - - - - - - 171

F1 0.9982 0.0017 0.9940 0.0059 0.9947 0.9996 0.9940 0.9968 0.9961 5

F2 0.9982 0.0017 0.9813 0.0186 0.9841 0.9996 0.9813 0.9904 0.9898 15

F3 0.9982 0.0017 0.0055 0.9944 0.1710 0.9405 0.0055 0.0110 0.5019 314

F4 0.9982 0.0017 0.1124 0.8875 0.2601 0.9968 0.1124 0.2021 0.5553 1

F5 0.9982 0.0017 0.2333 0.7666 0.3608 0.9984 0.2333 0.3783 0.6158 1

F6 0.9982 0.0017 1.0 0.0 0.9997 0.9996 1.0 0.9998 0.9991 1

F7 0.9982 0.0017 1.0 0.0 0.9997 0.9996 1.0 0.9998 0.9991 1

F8 0.9982 0.0017 0.9648 0.0351 0.9704 0.9996 0.9648 0.9819 0.9815 20

F9 0.9982 0.0017 0.0060 0.9939 0.1714 0.9453 0.0060 0.0121 0.5021 319

F10 0.9982 0.0017 0.2220 0.7779 0.3514 0.9984 0.2220 0.3632 0.6101 110

F11 0.9982 0.0017 0.3361 0.6638 0.4464 0.9989 0.3361 0.5029 0.6671 8

F12 0.9982 0.0017 0.9750 0.0249 0.9789 0.9996 0.9750 0.9872 0.9866 8

F13 0.9982 0.0017 0.9376 0.0623 0.9477 0.9996 0.9376 0.9676 0.9679 43

F14 0.9982 0.0017 0.9985 0.0014 0.9985 0.9996 0.9985 0.9991 0.9983 1

F15 0.9982 0.0017 0.0072 0.9927 0.1723 0.9534 0.0072 0.0143 0.5027 295

F16 0.9982 0.0017 0.0686 0.9313 0.2235 0.9948 0.0686 0.1283 0.5334 137

F17 0.9982 0.0017 0.7856 0.2143 0.8210 0.9995 0.7856 0.8797 0.8919 33

F18 0.9982 0.0017 0.9260 0.0739 0.9381 0.9996 0.9260 0.9614 0.9621 52

F19 0.9982 0.0017 0.0154 0.9845 0.1792 0.9777 0.0154 0.0305 0.5068 160

F20 0.9982 0.0017 0.3084 0.6915 0.4233 0.9988 0.3084 0.4712 0.6533 50

Table 4. Illustration of the detection results on the clean and the 20 anomalous
datasets using the LSTM based autoencoder. The clean dataset doesn’t contain anoma-
lous points, thus only the TNR and FPR are shown. Additionally, the anomalous
datasets contain both clean and anomalous data points.

detection delays up to 281 and 319 for the RNN and LSTM approaches. Tables
2 - 3 illustrate the remainder of the detection delay results.

Fig. 2 - 5 display the reconstruction residuals of three specifically chosen fea-
tures: D Feed Stream, Reactor pressure, and Reactor temperature. Additionally,
the figures show the detection decision made by the OCSVM model concerning
the validity of the data points. It is important to note that the OCSVM processes
a 52-dimensional data point, encompassing the reconstruction residuals for all 52
features. However, for visualization purposes, only three of these features were
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Fig. 2. Illustration of the detection results through the application of the MLP-based
AE and the OCSVM, on the Clean (left), F1 (middle) and F20 (right) datasets.
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Fig. 3. Illustration of the detection results through the application of the LSTM-based
AE and the OCSVM, on the Clean (left), F1 (middle) and F20 (right) datasets.
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Fig. 4. Illustration of the detection results through the application of the RNN-based
AE and the OCSVM, on the Clean (left), F1 (middle) and F20 (right) datasets.

plotted. As observed in Fig. 2 - 5, there is a clear difference between the residuals
for the F1 scenario, where the anomalous points distance themselves from the
training points. However, for F20 the points are more compact, thus increasing
the separation difficulty of OCSVM and resulting in higher FNR.

Continuing with the comparative analysis of our methodology, we present
the findings in Table 5, alongside results obtained from alternative detection ap-
proaches. Specifically, we compare our results with the GPR approach proposed
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by Maran et al. [20] and the supervised SVM approach introduced by Onel et
al. [21].

AE-OCSVM GPR [20] SVM [21]

FPR TPR DD FPR TPR DD FPR TPR DD

Clean 0.0024 - 171 0.2020 - - - - -

F1 0.0100 0.9962 2 0.0875 0.9963 4 0.00 0.9980 5

F2 0.0100 0.9874 10 0.1000 0.9838 15 0.00 0.9710 8

F3 0.0100 0.0145 70 0.0875 0.1913 17 0.00 0.0040 814

F4 0.0100 0.7667 1 0.0750 1.00 1 0.00 1.00 1

F5 0.0100 0.2339 1 0.0750 0.9925 1 0.00 1.00. 1

F6 0.0100 1.00 1 0.0500 1.00 1 0.00 1.00 1

F7 0.0100 1.00 1 0.1330 0.9963 1 0.00 1.00 1

F8 0.0100 0.9725 17 0.1625 0.9688 19 0.00 0.9340 18

F9 0.0100 0.0149 71 0.3625 0.1538 1 0.4940 0.5590 5

F10 0.0100 0.2156 42 0.0500 0.6113 84 0.075 0.7760 24

F11 0.0100 0.6089 10 0.0500 0.8075 6 0.00 0.9510 6

F12 0.0100 0.9817 6 0.1063 0.9888 12 0.00 0.9930 5

F13 0.0100 0.9439 34 0.0500 0.9575 37 0.00 0.8480 30

F14 0.0100 0.9992 1 0.0750 0.9988 1 0.00 1.00 1

F15 0.0100 0.0166 65 0.0625 0.1988 567 0.0720 0.0110 545

F16 0.0100 0.1092 37 0.2750 0.6450 29 0.00 0.8740 3

F17 0.0100 0.8554 25 0.1250 0.9025 24 0.00 0.9150 70

F18 0.0100 0.9330 38 0.0438 0.9038 85 0.00 0.9530 20

F19 0.0100 0.1182 8 0.0375 0.4213 326 0.00 0.9960 6

F20 0.0100 0.4163 39 0.0438 0.6588 75 0.00 0.9120 33

Table 5. Illustration of the performance compassion between our proposed solutions
and other recent techniques. Our proposed solution is showcased in the first column.
This table presents the best results obtained by each detection method.

Compared to the unsupervised GPR approach, our method obtained better
results in terms of FPR, on the clean dataset, with a 19.96% difference, and also
on all the faulty datasets. In terms of TPR, our method outperformed the GPR
approach on the F2, F7, F8, F14 and F18 datasets, and obtained a similar score
on the F1 dataset. The detection delay comparison reveals similar results on the
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F4, F5 ,F6, F7 and F14 datasets. Overall, in most of the cases, our approach
obtained faster detection times.

Compared to the supervised SVM approach, our method achieved better re-
sults in terms of FPR on the F9, F10, and F15 datasets, with the most significant
improvement observed on the F9 dataset, showing a 48% decrease in the FPR.
The TPR results reveal that our method outperformed the supervised SVM ap-
proach on the F2, F3, F8, F13 and F15 datasets. The measured detection delays
are identical and instantaneous, on the F4, F5, F6, F7 and F14 datasets, for
both methods. Overall, the two methods obtained similar results in terms of
detection delays, with two exceptions, on F3 and F15, where our model yielded
shorter delays.

6 Conclusions and Future Work

This paper introduced an unsupervised outlier detection approach designed for
continuous nonlinear systems, incorporating both an AE and an OCSVM model.
The AE plays a crucial role in modeling the monitored system by compressing
and reconstructing all system variables at each time-step. The resulting recon-
struction residuals of the signals are then utilized as multidimensional data-
points, fed into the OCSVM model, which provides binary decisions of clean or
outlier for each time-step. The study evaluated three different AE architectures,
namely LSTM, RNN, and MLP.

For the experimental assessment, we selected the TEP dataset, which is a
representation of an industrial chemical process, extensively used for exploration,
design, and evaluation of process control technologies, outlier detection and fault
analysis. To measure the performance of the proposed solutions, nine perfor-
mance metrics were utilized, including detection delay and Balanced Accuracy
for accurate performance evaluation in unbalanced datasets.

The proposed detection solutions were tested on both clean and 20 anomalous
datasets (F1 – F20). All models yielded the best results on the F1, F2, F4, F8,
F11,F12, F13, F14, F17, F18 and F20 anomalous datasets, and encountered
difficulties on the F3, F9, F15 and F19 datasets. Out of the three models, the
MLP based approach yielded the best results in terms of detection scores, while
the LSTM and RNN approaches obtained lower false alert rates. As highlighted
by other authors, the detection of F3, F9 and F15 is particularly challenging
due to the fact that there is no observable change in the mean, variance, and
higher-order variances of the signals. In terms of detection delays, the proposed
methods achieved notable results overall.

Compared to other outlier detection methods, our proposed approaches out-
performed unsupervised GPR techniques, in terms of FPR, on all the datasets,
with differences upwards of 19%. In terms of detection delays, our method out-
performed the GPR technique in all the tested scenarios.

In comparison to supervised SVM solutions, where the models were trained
with anomalous data as well, our method obtained better FPR results in three
scenarios, with differences up to 48%. In the rest of the scenarios, the SVM
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outperformed our method with a 1% difference. In terms of TPR and detec-
tion delay, our method obtained comparable results in multiple scenarios, even
outperforming the supervised approach in some of them.

As highlighted by the experimental results, there are several limitations to
unsupervised approaches, and not all the outliers can be instantly detected. How-
ever, considering the fact that the anomalous data-points were seen only during
detection, the models yielded notable results. Moreover, in real-life scenarios, it
is often difficult to generate or to gain access to faulty or anomalous datasets,
and supervised models are also limited to detecting only the scenarios that were
seen during training.

As identified by others as well [20, 21], a crucial metric to consider is the
detection delay. In certain situations, quickly detecting an outlier might be more
crucial than the overall number of true detections over an extended period. This
emphasizes the importance of timely and efficient outlier detection methods,
which can be better addressed by unsupervised approaches.

Future work could explore ways to enhance the proposed solutions through
a more meticulous feature selection process. However, this might result in in-
creased overhead and reduced ease of implementation. Another option worth
considering is employing ensemble approaches by integrating multiple smaller
AE or prediction models, as suggested in [56]. Additionally, the outlier detection
solution could be further improved by incorporating an extra module dedicated
to pinpointing the source of outliers.

As previously stated, supervised approaches yield great results but are lim-
ited to detecting only seen outlier patterns. Furthermore, obtaining labeled data
for all the possible scenarios might be difficult or unrealistic in certain scenar-
ios [57]. Therefore, another interesting future direction worth exploring is the
development of semi-supervised outlier detection approaches. These approaches
involve training models with a subset of outlier patterns and tested against
new, unseen, ones. Regarding the TEP dataset, semi-supervised models might
be trained with clean and a reduced subset of faulty observations, and tested
against all the available faulty scenarios.
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