
LOKI: A Lightweight Cryptographic Key
Distribution Protocol for Controller Area Networks

Abstract—The recent advancement in the automotive sector
has led to a technological explosion. As a result, the modern
car provides a wide range of features supported by state
of the art hardware and software. Unfortunately, while this
is the case of most major components, in the same vehicle
we find dozens of sensors and sub-systems built over legacy
hardware and software with limited computational capabilities.
This paper presents LOKI, a lightweight cryptographic key
distribution scheme applicable in the case of the classical in-
vehicle communication systems. The LOKI protocol stands out
compared to already proposed protocols in the literature due to
its ability to use only a single broadcast message to initiate the
generation of a new cryptographic key across a group of nodes.
It’s lightweight key derivation algorithm takes advantage of a
reverse hash chain traversal algorithm to generate fresh session
keys. Experimental results consisting of a laboratory-scale system
based on Vector Informatik’s CANoe simulation environment
demonstrate the effectiveness of the developed methodology and
its seamless impact manifested on the network.

Index Terms—Security protocols, key management, controller
area networks.

I. INTRODUCTION

In the automotive sector the recent technological advance-
ment and the need for more advanced features has led to a
technological explosion. The main result is that the modern car
provides a wide range of features supported by state of the art
hardware and software. Unfortunately, while this is the case for
most major components, in the same vehicle we find dozens of
sensors and sub-systems built over legacy hardware and soft-
ware with limited computational capabilities. In this context,
the integration of state of the art security mechanisms becomes
a challenging task, which requires innovative approaches.

In today’s modern vehicles the “backbone” communication
is provided by the Controller Area Network (CAN). Standard-
ised in 2003 [1], it is an International Standardization Organi-
zation (ISO) - defined communications bus that describes the
rules for exchanging data frames between devices. Given its
limitations mainly in terms of bandwidth and payload size,
recently, two main improved communication infrastructures
have been proposed. The CAN+ protocol was proposed by
Ziermann, et al. in 2009 [2], and it exploits the time between
transmissions to send additional data. More recently, in 2012,
Robert Bosch Gmbh developed the CAN with flexible data-
rate protocol (CAN-FD) [3], which brings several advantages
over CAN and CAN+, amongst which the most significant
being higher bandwidth and larger payload.

Unfortunately, while the latest advances in the CAN pro-
tocol have brought several advantages, today’s modern car

consists of a heterogeneous environment where the CAN-
FD protocol functions coexist alongside the classical CAN.
Therefore, this paper proposes a lightweight key generation
and data authentication scheme applicable in the case of the
classical CAN. The approach builds on Joshua Guttman’s
authentication tests, as formulated in [4]. The main advantage
of this approach is that it only requires a single broadcast
message in order to initiate the generation process of a
new cryptographic key for a group of Electronic Control
Units (ECUs). Experimental results consisting of a laboratory-
scale system demonstrate the effectiveness of the developed
methodology.

The remainder of this paper is structured as follows. Section
2 summarized the related work relevant to the proposed proto-
col. Continuing with Section 3, the proposed key management
protocol is in depth described. Following with a discussion
on the security properties of the proposed solution in Section
4. The experimental assessments conducted and the results
obtained are presented in Section 5, and finally, Section 6
concludes the paper.

II. RELATED WORK

The field of key distribution within in-vehicle commu-
nication systems has received significant attention. Several
techniques have been developed in order to secure CAN com-
munications. Starting with the work of Herrewege, et al. [5], it
was shown that, while the CAN bus has significant limitations
in terms of payload and bandwidth, data authentication is still
achievable via Message Authentication Codes (MACs), and
more specifically the HMAC standard, alongside a counter in
order to ensure freshness and resistance against replay attacks.

By leveraging the breakthrough in the field of sensor
networks, namely the Timed Efficient Stream Loss-tolerant
Authentication protocol (TESLA) [6], B. Groza, et al. [7],
developed an approach specially tailored to the CAN protocol.
The approach integrated symmetric cryptographic functions
(i.e., MAC) for data authentication and for releasing new
session keys. Similarly to TESLA, keys are chained and
released after the authenticated frames.

Next, we mention the more recent work of Radu and
Garcia [8], where the LeiA CAN authentication protocol was
presented. LeiA is designed to be backward compatible with
existing vehicle’s CAN infrastructure and it authenticates each
CAN frame by adding one additional frame (and new CAN
identifier) to each CAN frame. The newly added frame carries
the authentication tag and leverages a 64-bit truncated MAC.

By taking advantage of the CAN-FD protocol, Woo, et al.
[9], developed a secure communication protocol and security
architecture for CAN-FD-enabled in-vehicle systems. The ap-
proach involves data encryption (via symmetric cryptography)
and authentication (via MAC computation). However, the
additional encryption introduces significant overhead on the
CAN, which is mitigated by the assumption of CAN-FD as
underlying communication infrastructure.

Wang and Liu [10] acknowledged the importance of se-
curing gateway Electronic Control Units (ECUs), which pro-
vide various communication interfaces, including the support
for Vehicle to Internet communications. Wang’s approach is
similar to the one proposed in this work, since it focuses on
mitigating common network attacks frequently seen on the
CAN bus, by developing a security protocol at application
level. Furthermore, Wang and Liu provide useful threat anal-
ysis and attack models based on ISO 13335 Guidelines for
the Management of IT Security for the automotive networks.
In contrast to their approach, this paper documents an even
simpler key distribution scheme based on on a single message
that can be deployed via regular software updates.

III. DEVELOPED APPROACH

By taking advantage of the native properties of the the
Controller Area Network (CAN) protocol, such as, its broad-
cast communication pattern, and its multiple master/slave
design, our approach presents a specially tailored, simple, yet
effective, key distribution protocol for CAN environments. The
LOKI protocol intends not to distribute cryptographic keys in
the classic sens, but to update session or group key, without
the need of the actual transmission of the key. This is done
by leveraging a set of bootstrapped cryptographic primitives,
and by taking advantage of a reverse hash chain traversal
algorithm, namely the Speed2Pebbling algorithm. This implies
that ECUs are grouped based on their relationship with each
other, and that each group has a master ECU that is responsible
for two main operations: (i) initiating the generation of a
new session key; and (ii) responding to key synchronization
requests.

Each group is bootstrapped with a master key denoted by
KM

g , where g is the group identifier, and M denotes the
master of the respective group. The master key is a long-
term cryptographic key installed during factory setup, and it is
presumed to be hardware-protected against changes (e.g., via a
Trusted Platform Module – TPM). Similarly, each participant
in a group, is bootstrapped with the starting value of a hash
chain, and a set of intermediate hash chain values issued by
the trusted authority in the protected zone. For each group g,
the first value in the chain is considered to be the first session
key, denoted as kig , with i as a session identifier. As described
in the following section, a set of intermediate points in the
chain are used to travel in reverse the chain. This operation
servers as a key derivation function (KDF), based on which
the session or group key are generated.

There are several advantages of using Speed2Pebbling to
reverse traverse a given chain in order to generate new keys.

First, as described in the following section, the algorithm is
limited to a maximum of b hash computations per round.
Second, its complexity in terms of storage is limited to O(b),
with b being the number of intermediate hashes stored in order
to reverse traverse the chain. For example, for a hash chain of
length 25, only 5 intermediate hashes are stored.

A. Derivation of Cryptographic Keys

Hash chains were designed and introduced by Leslie Lam-
port in [11] as a technique to authenticate users to a server
over an insecure network communication channel. Hash chains
proved their usefulness not only in user authentication, but
also in lightweight, environment restricted, security proto-
cols. Based on one-way hash functions, hash chains inherit
their properties directly, such as: first and second preimage
resistance, and collision resistance to attacks. In Lamport’s
protocol, a hash chain of length n is defined as fn(x), where
x is a random secret seed used to initialized the chain. To
compute the hash chain, one must apply n hash operations on
x to obtain fn(x). For example, for length n = 1000 hash
chain, one it is required to compute 1000 hash operations on
the seed x (i.e., f1000(x)) to obtain the first value in the chain.

In order to authenticate a user to a server in the schema
developed by Lamport, the server is required to store the first
value of a hash chain of length n, meaning fn(x). The user
authenticates himself to the server by providing fn−i(x). To
verify the user’s authenticity, the server must compute i hash
operations on fn−i(x) and compare the output to the stored
value fn(x). If the values match, the user is authenticated.

Starting with the work Jakobsson [12], the problem of
forward hash chain traversal took a whole new approach. By
leveraging b intermediate points in the chain, called pebbles,
Jakobsson’s approach was able to reduce the number of hash
computations required for a given value in the chain, to
O(log2n). By extending Jakobsson’s algorithm, Schoenmaker
[13] developed a binary pebbling algorithm capable of travers-
ing in reverse a hash chain of length n = 2b. This was
done by storing only maximum b intermediate points, with the
maximum b

2 hash computations per algorithm round. In this
work we take advantage of Schoenmaker’s Speed2Pebbling
algorithm to build a lightweight key distribution protocol over
the CAN bus network.

Let Pb(x) be an algorithm that outputs in reverse the hash
chain fn

b (x) using in total b2b−1 hash operations, where n is
the chain length and b the number of pebbles stored by Pb(x).
In the present context, a pebble represents a hash value stored
with the purpose of helping Pb(x) traverse in reverse the hash
chain fn

b (x). In each round r, a pebble pb stored by Pb(x)
can have one of the following states:
• Idle: if it’s in a round r in the interval [1, 2b−1).
• Hashing: if it’s in a round r in the interval (2b−1, 2b).
• Redundant: if it’s in a round r in the interval (2b, 2b+1).
Throughout rounds [1, 2b−1), Pb(x) produces no output at

all, only in the rounds (2b−1, 2b) hashes are outputted. If a
pebble pb becomes redundant, it is replaced by the pebbles
p0, ..., pb−1 in the course of its last 2b − 1 output rounds. In

order to maintain and determine the state of the pebbles that
should run in round r, the binary representation of a counter
c = 2b+1 − r is used. Furthermore, c is used to count the
remaining number of rounds r. As for storage, an array z of
length b is used to store the pebbles. Next, the two stages for
Pb(x) are described:

• Initial stage: During its initial stage, Pb(x) generates the
fn
b (x) chain, and stores b pebbles in z. During this stage,

a number of 2b hash operations are computed.
• Output stage: During its output stage, in each round r, a

hash value is outputted. In each round r, several pebbles
pb can run in parallel by taking turns to execute and
update their position in the chain.

Both stages of the algorithm are briefly described in the
following. For a more in depth, step by step analysis of the
method, it is recommended that the reader consults [13].

Algorithm 1: Initial stage
Input: s Secret seed

b Number of pebbles
z Array used to store the pebbles

Output: z
Function Initialization(b, z):

q ← b
y ← f(s)
i← 2b

while i ≥ 1 do
if i = 1 << q then

z.Append(y)
q ← q − 1

y ← f(y)
i← i− 1

return z
End Function

Algorithm 1 describes the steps to create the hash chain,
and the placement of b pebbles in array z. On the other hand,
Algorithm 2 describes the execution of the Speed2Pebbling
algorithm in a round r. First, the output h is updated. Then, us-
ing the HasZeros() function call, which checks the counter
c for trailing 0 bits, it is determined if there are redundant
pebbles that require update. If true, the redundant pebbles
are updated. Afterwards, the state of the currently running
pebble is determined and updated using the HasOnes()
function. Finally, the GetNextPebble() function is called,
traversing the binary representation of c and returning the next
hashing pebble, which is identified with a 1 bit in c.

B. Generating Fresh Cryptographic Keys

The method of generating a fresh, new group cryptographic
key, named in the following as group key, consists of a
single message that is broadcasted by the group’s master
ECU, further denoted as ECUM

g . The following message is

Algorithm 2: Output stage for round r

Input: z Array used to store the pebbles
r Current round of the algorithm

Output: h Hash value outputted in round r
Function Round(z, r):

h← z[0] Hash value that will be returned
c← r Set c to the current r value
i← 0 Initialize i index for redundant pebble
while HasZeros(c) do

z[i]← z[i+ 1] Update redundant i
i = i+ 1
c = c >> 1

i = i+ 1
c = c >> 1
q = i− 1
while HasOnes(c) do

z[q]← f(z[i]) Update current q pebble
if q 6= 0 then

If q is redundant
z[q]← f(z[q]) Update it

c← GetNextPebble(c)
q ← i

return h
End Function

Algorithm 3: Generating a new group key
Input: z Array used to store the pebbles

r Current round of the algorithm

Output: ki+1
g New group key

Function GenerateGroupKey(z, r):
ki+1
g ← Round(z, r)
Store(ki+1

g)
t← GetCurrentTime()
input← kig||t||CID||g
macMg ← MAC(input,KM

g)
macMgtrunk

← Trunk(macMg , 64)
Send(macMgtrunk

)

End Function

broadcasted by ECUM
g , to all group members denoted by

ECU∀idg (where id is the ECU’s unique identifier):

ECUM
g → ECU∀idg : MAC(kig||t||CID||g,KM

g).

In the previous equation, a MAC function is computed
by ECUM

g over the current session key kig , a timestamp
t, concatenated with the message CAN identifier (CID) of
the current frame, and the group identifier g, by leveraging
the group’s master key KM

g . This procedure is described in
Algorithm 3. First of all, ECUM

g generates a new session key
by executing Algorithm 2. Namely, the hash chain is traversed
in reverse and the next hash in the chain is used to update the

Algorithm 4: Verification of a new group key

Input: macMgtrunk
MAC received from master

M of group g
z List of pebbles g
r Current algorithm round g

Output: ki+1
g New group key

Function VerifyGroupKey(macMgtrunk
, z, r):

t← GetCurrentTime()
curr ← 1
while curr ≤ R do

mac← MAC(kig||t||CID||g,KM
g)

mactrunk ← Trunk(mac, 64)
if macMgtrunk

6= mactrunk then
curr ← curr + 1
t = t+ 1

else
ki+1
g ← Round(z, r)
Store(ki+1

g)
return

if curr = R then
Synchronize()

End Function

previous session key kig . To compute the previously mentioned
operation, the session key kig is concatenated with the global
timestamp, with the frame CID and the group identifier g. In
order to fit this construction in a single CAN frame, the MAC
tag is truncated to 64 bits. By doing so, the authentication tag
fits not only in a single CAN frame, but also conforms with
the standard set by AUTOSAR SecOC [14] and NIST [15].

By broadcasting this cryptographic construction, the master
ECUM

g initiates, for each group member, the procedure for
generating the next group key.

In order to successfully verify the authenticity and integrity
of a received MAC, the synchronization of timestamps is
critical. Given that the timestamp is not sent explicitly by
ECUM

g , but it is obtained by ECUs via the time synchroniza-
tion protocol, the resolution of the timestamp needs to be in the
level of seconds. However, we observe that even so, a slight
delay in the verification can yield a difference in timestamps
of several seconds. Thus, the verification procedure, if it fails
the first time, gradually, a set of retries are executed with the
value of the timestamp t incremented by one on each attempt.
In this process, R denotes the maximum number of attempts
that a verifier ECU should go through. The optimal value for
R should be determined at system design time by the Original
Equipment Manufacturer (OEM). This procedure is described
in Algorithm 4.

If the received MAC is successfully authenticated, the
verifier ECU proceeds to compute the next group key in the
same fashion as the master, by executing Round() algorithm
to obtain the next hash from the chain.

It is to be noted that this process can lead to miss syn-
chronization. First, in terms of timestamps, and second, in
terms of pebbles. To address these issues, we presume that
the time protocol that runs in the network conforms to the
AUTOSAR standard, thus, a time synchronization protocol
is in place. Conversely, for the pebbles, a synchronization
procedure must take place between the ECU slave, ECUS

g

and the master ECUM
g . This procedure follows a challenge-

response communication pattern that is described in the next
section.

In terms of security construction, this scheme adheres to
Joshua Guttman’s authentication tests, as formulated in [4].
More specifically, the scheme adheres to Guttman’s unsolicited
authentication test, which includes a single message. While
weaker in terms of authentication tests, the recipient can verify
the freshness and the authenticity of the message.

C. Key Synchronization Protocol

A possible scenario for the proposed protocol is that a
given ECUS

g may miss, or not receive the MAC tag sent
by ECUM

g that triggers the key generation protocol. Thus,
a synchronization protocol must exists for ECUS

g to request
the stored pebbles from ECUM

g .
The synchronization procedure consist of the following

steps:

Challenge : ECUS
g → ECUM

g : NS ||
MAC(NS ||t||CID||g,KM

g),

Response : ECUM
g → ECUS

g : {PM
b }KM

g
||

MAC({PM
b }KM

g
||NS + 1||t||CID||g,KM

g).

The synchronization protocol follows a challenge-response
pattern, in accordance with Joshua Guttman’s authentication
tests [4], where ECUS

g challenges ECUM
g , in the same time

while requesting the master’s pebbles. In the equations above,
NS denotes a nonce generated by the ECUS

g . In the challenge,
along with the nonce NS , a MAC tag is sent, which is
computed over the nonce, the current timestamp t, the CAN
frame identifier CID, and the group identifier g, using the
master key KM

g .
Upon receiving the challenge, ECUM

g proceeds with the
MAC verification. If successful, it responds with a series of
messages that contain the encrypted pebbles PM

b with the
master key KM

g , denoted by the operation {}. Besides this,
every encrypted pebble is transmitted together with a MAC tag
computed over the encrypted pebble {PM

b }KM
g

, the nonce NS

incremented by one, a timestamp t, the CAN identifier CID,
and, the group identifier g, by leveraging the same master
key KM

g . Once again, this construction is in accordance with
Joshua Guttman’s authentication tests [4].

Here, the number of CAN messages required in order to
synchronize a slave ECUS

g with a master ECUM
g depends

on the length of the hash function used in the computation
of the hash chain, and the number of pebbles used in reverse
traversing the chain.

Algorithm 5: Key Synchronization

Input: KM
g Master key of group g

Output: ki+1
g New group key

Function Synchronize():
mac← MAC(NS ||t||CID||g,KM

g)
mactrunk ← Trunk(mac, 64)
Send(< NS ,mactrunk >)
< {PM

b }KM
g
,macMgtrunk

>← Receive()
mac′ ←
MAC({PM

b }KM
g
||NS + 1||t||CID||g,KM

g)
mac′trunk ← Trunk(mac′, 64)
if mac′trunk = macMgtrunk

then
UpdatePebble(Pb, {PM

b }KM
g
,KM

g)

End Function

Upon receiving the requested pebbles, ECUS
g checks the

integrity of the MAC tag before it proceeds to update the
stored pebbles. If the MAC tag verification is successful, then
ECUS

g decrypts pebble PM
b and updates the stored pebbles.

The key synchronization is summarized in Algorithm 5.

D. Slave Authentication

It should be noted that the developed scheme offers several
notable advantages, namely: reduced number of CAN mes-
sages required to generate a new group key; a reduced impact
on the CAN bus load; and, a lightweight structure where slaves
do not respond to the master’s requests. Nevertheless, these
advantages entail that slaves are authenticated later against
their knowledge on the new group key.

To verify that the generation of the new group key ki+1
g

succeeded across all the members of the group g, ECUM
g

verifies the authenticity of incoming CAN messages from
each ECUS

g in a given time window. If ECUM
g is able to

verify the signed messages with the new group key, then,
the key distribution protocol can be considered successfully
completed.

E. Security Analysis

There are several security properties defined in the literature
[16], [17], that a group key management schema should
guarantee. Thus, such an approach should encompass the
following:

1) Forward secrecy: guarantees that even if a set of previ-
ously released set of keys are known by an adversary,
he/she is unable to discover any future group keys.

2) Backwards secrecy: similar to forward secrecy, guar-
antees that even if a set of previously released set of
keys are known by an adversary, he/she cannot discover
previously released group keys.

3) Group key secrecy: guarantees independence between
groups, by leveraging different cryptographic keys
shared among the participants, while in the same time

making it computationally infeasible for an adversary to
compromise a group key.

The first two properties, forward and backward secrecy, are
satisfied by LOKI due to the properties inherited from hash
chains. Here, it is computationally infeasible for a adversary
to try to compute a new session key, after compromising
a previously released key, due to the nature and guarantees
offered by hash functions. Furthermore, the secret seed from
which the hash chain was generated, is not known by the
communication participants, nor it can be known by the
adversary, but only by the OEM trusted authority.

The group key secrecy property is guaranteed by the possi-
bility of using a set of different cryptographic primitives for
each group. This means that each group can be bootstrapped
with a different master key KM

g , and with a different hash
chain. Consequently, even in the worse case scenario where
a group is compromised by an adversary, this event will not
affect other existing groups.

Lastly, we note that LOKI complies to the existing Secure
On Board Communication Standard developed by AUTOSAR
[14]. First, it complies in terms of key length usage, which
are at least 128-bit in length. Second, freshness is ensured by
timestamps, which are obtained via the time synchronization
protocol. Last but not least, 64-bit length truncated MAC
authentication tags are used to sign the sent CAN messages.

IV. EXPERIMENTAL ASSESSMENT

To demonstrate the applicability of the proposed key man-
agement protocol, its impact has been measured in a close
to reality simulated CAN bus, in terms of bus load for
different bus baud rates. First of all, the CAN bus network
was designed. Then, for each chosen baud rate, a base line
was measured. Finally, the proposed protocol was integrated
and ran over the same CAN bus for each baud rate chosen
and the results obtained were compared to the baseline ones.

A. Implementation Details

In order to simulate a close to reality CAN bus network,
the simulation environment CANoe/CANalyzer [18] provided
by Vector Informatik was used. In terms of implementation,
the proposed protocol was implemented using the C and
C++ programming languages. For cryptographic primitives,
the Win32 certified API was used. To run the protocol in
CANoe, a Windows Dynamic Linked Library (DLL) that
implements the CANoe programming interface was developed.
By opting to implement the CANoe programming interface as
such, the C/C++ functions have been made available to the
build-in CANoe scripting language CAPL, which was used to
program the simulated ECUs behaviour. Finally, regarding the
protocol parameters, the implementation used: a 256 bit-length
master key, a 128 bit-length secret seed, SHA-1 to compute
the hash chain, and, 64 bit truncated HMAC using SHA-1 to
compute the message authentication tags.

In terms of network design, a single simulated CAN bus
network was considered. On this network, the Global Time
protocol was activated in order to provide the freshness values

TABLE I
MINIMUM, MAXIMUM AND AVERAGE BUSLOAD FOR CAN BUS RUNNING

AT 100 KBPS BAUD RATE.

Min. Busload Max. Busload Avg. Busload
LOKI and SecOC 53.06% 55.80% 55.20%
LOKI 30.87% 32.89% 32.31%
Normal 30.87% 32.54% 32.25%

TABLE II
MINIMUM, MAXIMUM AND AVERAGE BUSLOAD FOR CAN BUS RUNNING

AT 125 KBPS BAUD RATE.

Min. Busload Max. Busload Avg. Busload
LOKI and SecOC 42.45% 44.64% 44.15%
LOKI 24.70% 26.31% 25.86%
Normal 24.70% 26.03% 25.80%

for the protocol. Overall, three groups of ECUs have been
designed such that each group consisted of one group master
and three slave ECUs. The build-in Generator feature from
CANoe was used to periodically generate burst of CAN frames
to influence the bus load.

B. Scenario

By following the implementation and design details pre-
sented in the previous section, the experimental results were
obtained in the next manner. First, a set of bus baud rates were
chosen: 100, 125 and 250 Kbps. For each baud rate, a busload
baseline was measured in the absence of the LOKI protocol.
Afterwards, the LOKI protocol was enabled. Every group
master ECUM

g periodically, at a predefined time, initiated the
generation of a new group key. Each slave ECU∀idg updated
accordingly its group key by following the protocol. Subse-
quently, according to AUTOSAR’s SecOC (Secure On Board
Communication) standard, each slave ECU∀idg periodically
sent authenticated traffic using a 64-bit truncated MAC. Lastly,
in every measurement, the Global Time protocol was executed.

C. Results

For each baud rate, 100 Kbps, 125 Kbps, 250 Kbps, the
minimum, maximum and average busload were measured in
three different contexts. The first context refers to the CAN bus
busload in terms of normal, security protocol-free setup, which
also represents the baseline for the following experiments.
This is denoted by the term Normal in the followings.
The second context consists of running the simulation with
the LOKI protocol, and it is identified by the term LOKI
(i.e., Lightweight Cryptographic Key Management Protocol).
Finally, besides the key management protocol, an additional
measurement was conducted, where the CAN frames sent
by ECUs were sent in parallel with truncated MAC tags, as
specified by AUTOSAR SecOC.

Tables I, II, III summarize the results of the conducted
experiments. As shown here, the impact of the developed
scheme on the overall traffic is reduced. Namely, the additional
CAN bus load rounds in the average at maximum 1%. This
is owed to the additional CAN messages, which have been
added to the system are part of the developed security scheme.

TABLE III
MINIMUM, MAXIMUM AND AVERAGE BUSLOAD FOR CAN BUS RUNNING

AT 250 KBPS BAUD RATE.

Min. Busload Max. Busload Avg. Busload
LOKI and SecOC 21.23% 22.32% 22.08.%
LOKI 12.35% 13.15% 12.93%
Normal 11.67% 12.10% 12.03%

The additional increase of the CAN bus load in the case
of activating the SecOC is owed to the fact that, after the
execution of the proposed key distribution scheme, each CAN
frame is authenticated by a truncated MAC. More specifically,
according to SecOC, in the present experiment, for each CAN
frame an additional CAN frame was sent, which contained the
authentication tag.

V. CONCLUSIONS

In this work, we designed and implemented the LOKI
protocol. LOKI provides a lightweight key management pro-
tocol, which is backwards compatible with the Control Area
Networks protocol. By taking advantage of a reverse hash
chain algorithm in order to generate new session or group
keys, LOKI minimizes the overhead on the communication
bus, while maintaining the normal operation of the in-vehicle
communication systems. The measurements prove the viability
of key management protocol proposed in the current work.

As future work, our intent is to implement the LOKI
protocol in a real CAN test-bed, that contains similar hardware
with the hardware found in Electronic Control Units (ECUs)
and measure its performance more accurately. Furthermore,
we observed that certain improvements can be made in order
to reduce the overhead brought by the pebble synchronization
protocol. Here, we intend to develop a method of synchroniza-
tion that eliminates the need for the actual transmission of the
pebbles. To this end, if a slave ECU is able to communicate
the state of it’s hash chain to a master, in response, the master
could determine in relation with it’s chain state the number
of rounds required by the slave to be computed in order to
synchronize itself with the group. Consequently, this would
fully eliminate the need for transmission of any information
regarding the key management protocol, and, it would further
reduce the bus overhead.

ACKNOWLEDGMENTS

This work was funded by the European Union’s Horizon
2020 Research and Innovation Programme through DIAS
project (https://dias-project.com/) under Grant Agreement No.
814951. This document reflects only the author’s view and the
Agency is not responsible for any use that may be made of
the information it contains.

REFERENCES

[1] ISO, “ISO 11898-1:2003 - Road vehicles - Controller
area network (CAN) - Part 1: Data link layer and phys-
ical signalling,” International Organization for Stan-
dardization, 2003.

[2] T. Ziermann, S. Wildermann, and J. Teich, “CAN+:
A new backward-compatible Controller Area Network
(CAN) protocol with up to 16 higher data rates.,” in
2009 Design, Automation Test in Europe Conference
Exhibition, Apr. 2009, pp. 1088–1093. DOI: 10.1109/
DATE.2009.5090826.

[3] Robert Bosch Gmbh, “Can with flexible data-rate,”
Vector CANtech, Inc., MI, USA, Specification Version
1.0, 2012.

[4] J. D. Guttman, “Security protocol design via authentica-
tion tests,” in Proceedings 15th IEEE Computer Security
Foundations Workshop. CSFW-15, 2002, pp. 92–103.

[5] A. Van Herrewege, D. Singelee, and I. Verbauwhede,
“CANAuth - A Simple, Backward Compatible Broad-
cast Authentication Protocol for CAN bus,” in
ECRYPT Workshop on Lightweight Cryptography 2011,
ser. ECRYPT ’11, 2011, pp. 1–7.

[6] A. Perrig, R. Canetti, J. D. Tygar, and Dawn Song, “Ef-
ficient authentication and signing of multicast streams
over lossy channels,” in Proceeding 2000 IEEE Sym-
posium on Security and Privacy. S P 2000, May 2000,
pp. 56–73. DOI: 10.1109/SECPRI.2000.848446.

[7] B. Groza and S. Murvay, “Efficient Protocols for Se-
cure Broadcast in Controller Area Networks,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 4,
pp. 2034–2042, Nov. 2013, ISSN: 1941-0050. DOI: 10.
1109/TII.2013.2239301.

[8] A.-I. Radu and F. D. Garcia, “LeiA: A Lightweight
Authentication Protocol for CAN,” in Computer Se-
curity – ESORICS 2016, I. Askoxylakis, S. Ioannidis,
S. Katsikas, and C. Meadows, Eds., Cham: Springer
International Publishing, 2016, pp. 283–300, ISBN: 978-
3-319-45741-3.

[9] S. Woo, H. J. Jo, I. S. Kim, and D. H. Lee, “A
Practical Security Architecture for In-Vehicle CAN-
FD,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 8, pp. 2248–2261, Aug. 2016,
ISSN: 1558-0016. DOI: 10.1109/TITS.2016.2519464.

[10] L. Wang and X. Liu, “NOTSA: Novel OBU With Three-
Level Security Architecture for Internet of Vehicles,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3548–
3558, Oct. 2018, ISSN: 2372-2541. DOI: 10.1109/JIOT.
2018.2800281.

[11] L. Lamport, “Password authentication with insecure
communication,” Commun. ACM, vol. 24, no. 11,
pp. 770–772, Nov. 1981, ISSN: 0001-0782. DOI: 10 .
1145/358790.358797. [Online]. Available: https://doi.
org/10.1145/358790.358797.

[12] M. Jakobsson, Fractal hash sequence representa-
tion and traversal, Cryptology ePrint Archive, Report
2002/001, https://eprint.iacr.org/2002/001, 2002.

[13] B. Schoenmakers, Explicit optimal binary pebbling
for one-way hash chain reversal, Cryptology ePrint
Archive, Report 2014/329, https://eprint.iacr.org/2014/
329, 2014.

[14] AUTOSAR, “Specification of Secure Onboard Com-
munication AUTOSAR CP Release 4.3.1,” AUTOSAR,
2017.

[15] Q. H. Dang, Recommendation for Applications Using
Approved Hash Algorithms, Special Publication (NIST
SP) - 800-107 Rev 1, 2012. [Online]. Available: https:
/ / www . nist . gov / publications / recommendation -
applications-using-approved-hash-algorithms.

[16] A. Penrig, D. Song, and D. Tygar, “Elk, a new protocol
for efficient large-group key distribution,” in Proceed-
ings 2001 IEEE Symposium on Security and Privacy. S
P 2001, 2001, pp. 247–262.

[17] M. Steiner, G. Tsudik, and M. Waidner, “Cliques: A
new approach to group key agreement,” in Proceedings.
18th International Conference on Distributed Comput-
ing Systems (Cat. No.98CB36183), 1998, pp. 380–387.

[18] Vector Informatik, CANoe v 12.0: Testing ECUs and
Networks with CANoe, Last access: January 6th, 2020,
2020. [Online]. Available: https://www.vector.com/int/
en/products/products-a-z/software/canoe/.

