
Network Intrusion Detection System Using
Anomaly Detection Techniques

David Oroian
Communications Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

Aalto University
Espoo, Finland

david.oroian@aalto.fi

Roland Bolboaca
Department of Engineering and Engineering Technology

”George Emil Palade” University of Medicine,
Pharmacy, Science and Technology of Targu Mures

Targu Mures, Romania
roland.bolboaca@umfst.ro

Adrian-Silviu Roman
Department of Engineering and Engineering Technology

”George Emil Palade” University of Medicine,
Pharmacy, Science and Technology of Targu Mures

Targu Mures, Romania
adrian.roman@umfst.ro

Virgil Dobrota
Communications Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

virgil.dobrota@com.utcluj.ro

Abstract—In the current digital landscape, protecting networks
against malicious activities is a critical challenge. Network
Intrusion Detection Systems (NIDS) are vital as the first line
of defense, continuously monitoring network traffic to detect
and prevent potential attacks in real-time. As cyber-attacks
get more complex and more similar to normal traffic, robust
NIDS solutions have become more crucial than ever. This paper
proposes an architecture for an anomaly-based NIDS that has a
Multi-Layer Perceptron (MLP) as a binary classifier. The system
employs the Cisco TRex generator to simulate network traffic,
capturing and analyzing the data using tcpdump and Zeek,
and lastly preprocessing it for the MLP using Python scripts.
Three algorithms were evaluated for the classification task:
Isolation Forest (IF), MLP, and Autoencoder, all implemented
with TensorFlow and Keras. The models were trained and
tested on two widely recognized datasets for anomaly detection,
KDDCUP99 and UNSW-NB15. The experimental results show
the superiority of the UNSW-NB15 dataset compared to the
KDDCUP99 one in terms of complexity and its likeness to real-
world traffic. Moreover, the results also prove that a simple
Deep Learning (DL) algorithm such as the MLP can serve as
an effective first-line defense against cyber threats. This study
contributes to the ongoing development of more effective NIDS
by exploring the application of machine learning techniques in
anomaly detection, offering the potential for enhancing network
security.

Keywords—Anomaly Detection, Autoencoder, Cyber Security,
Isolation Forest, KDDCUP99, MLP, NIDS, UNSW-NB15

I. INTRODUCTION

Intrusion Detection Systems (IDS) are categorized into three
main types: Signature-based (SIDS), Anomaly-based (AIDS),
and hybrid systems [1]. SIDS rely on known attack patterns
but struggle with zero-day attacks, while AIDS can detect

new threats by identifying deviations from normal behavior.
However without careful algorithm selection, proper model
optimizations, and an adequate thresholding methodology, they
often suffer from high false positive rates. Hybrid systems
combine SIDS and AIDS to enhance accuracy and recall [2, 3],
though they may still face challenges with false positives.

Signature-based, often referred to as Knowledge-based or
Misuse Detection [2], imply that there is a database of known
patterns of attacks to which the system matches its given
inputs. This method has the disadvantage of not being able
to identify zero-day attacks, and it requires significant effort
to update the database with new attack patterns as they occur.

Anomaly-based systems have the advantage of identifying
zero-day attacks, as they learn the normal pattern of data
and, by analyzing the deviation of new data from the normal
pattern, decide whether or not an anomaly was encountered.
Their disadvantage is the high rate of false positives. Such
a system was developed in [2] using an AdaBoost classifier
ensemble made up of a Decision Tree (DT), Naive Bayes
(NB), and Artificial Neural Network (ANN). The results
reported an increased performance in terms of accuracy and
recall. The downside of this method is the result of significant
overhead [3].

The hybrid systems combine both SIDS and AIDS archi-
tectures in order to improve the precision and recall of the
model. Such a technique was proposed in [3], using a C5 DT
classifier for the SIDS and a One-Class SVM with a Radial
Basis Function (RBF) kernel for the AIDS. The SIDS checks
to see if it can match the input traffic to a known attack
signature from a database, if it cannot, the input goes further
to the AIDS. The latter is trained with samples representing
normal traffic and decides on how to classify the traffic based979-8-3315-3997-9/24/$31.00 ©2024 IEEE

on a chosen threshold. If it gets classified as malicious, its
signature is put into the database so it can be detected by
the SIDS from now on. The combination of the two stages
resulted in an overall accuracy of 94%, the false positive rate
being the biggest downside to the model.

This study proposes an effective NIDS by investigating the
application of machine learning techniques in anomaly de-
tection, offering the potential for enhancing network security.
The approach was tested and evaluated on three Machine
Learning (ML) models for anomaly detection: IF, MLP and
Autoencoder, on the KDDCUP99 and UNSW-NB15 datasets.
For the features of the datasets, only a subset was used from
each one, both taken from literature. We also created a testbed
for real-time traffic classification for which the MLP model
chosen and the features used in the KDDCUP99 dataset were
extracted based on the comparison conducted.

The experimental results show the superiority of the UNSW-
NB15 dataset compared to the KDDCUP99 one in terms of
complexity and its likeness to real-world traffic. Moreover,
the results also prove that a simple Deep Learning (DL)
algorithm such as the MLP can serve as an effective first-line
defense against cyber threats. This study contributes to the
ongoing development of more effective NIDS by exploring
the application of machine learning techniques in anomaly
detection, offering potential pathways for enhancing network
security.

The rest of this paper is organized as follows: Section II
offers an overview of the current state-of-the-art in NIDS.
Section III then details the reasoning of our chosen solution.
Section IV provides a comprehensive description of the pro-
posed approach, followed by the presentation of experimental
results in Section V. Finally, the paper concludes in Section
VI.

II. RELATED WORK

A variant of an Anomaly Intrusion Detection System
(AIDS) using an AdaBoost classifier ensemble was proposed
in [2]. They have generated and evaluated the TCP/IP model,
focusing on Message Queuing Telemetry Transport (MQTT),
Domain Name System (DNS), and Hypertext Transfer Pro-
tocol (HTTP) protocols. In order to capture the traffic from
their test-bed they have used tcpdump for capturing traffic in
pcap files, the Bro-IDS tool in order to generate connection-
based features from the generated pcap files, and at last using
a custom extractor module to create the remaining features for
the input of the model out of the features generated in the logs
by the Bro-IDS tool. The connection-based features, which
represent network flows, present an aggregated view of the
network. It is more advantageous to analyze flows compared
to any other datasets as the time spent analyzing them is
considerably reduced [4]. In [2] the correntropy measure [5]
was used to estimate the similarities between normal and
abnormal features, showing a clear distinction between the two
classes [2]. The results reported an increased performance in
terms of detection rate and recall. The downside of this method
is the result of significant overhead [3].

In [3], Khraisat et al. proposed a hybrid NIDS made out
of an AIDS and a Signature-based Intrusion Detection System
(SIDS), using a C5 DT classifier for the SIDS and a One-Class
SVM with a Radial Basis Function (RBF) kernel for the AIDS.
The two classifiers were combined using the boosting method,
which also resulted in decreasing the bias of the system.
The Hybrid Intrusion Detection System (HIDS) has the aim
of detecting both patterns for known attacks and novel ones
while at the same time reducing the false positive rates and
increasing the detection rate. The dataset used for training and
validating the model is the Bot-IoT dataset, which was created
by Koroniotis et al. to simulate real Internet of Things (IoT)
network traffic as well as possible attack types [6]. Feature
selection, in this approach, was tackled using Information Gain
(IG), because of its advantageous execution time which is
crucial when it comes to IoT devices. The combination of
the two stages resulted in an overall accuracy of 94%.

Another approach to AIDS was developed in [4] using
a stacking approach. This method was first introduced as a
concept in [7] and was later shown to produce more reliable
results by the publication of the Super Learner article [8].
In [4] three classifiers were used as base models - K-nearest
Neighbour (KNN), logistic regression (LR), and random for-
est (RF) - from which the metaclassifier, a Support Vector
Machine (SVM), learns to predict the samples. The article
underlines the fact that something hard to improve is the
detection rate for attacks such as analysis, Denial Of Service
(DOS), worms, and backdoors. The main advantage of this
method is the improvement in the accuracy of the prediction
when given as input unbalanced datasets [9].

III. PROPOSED METHODOLOGY

In this paper, which is based on our preliminary work
from [10], we created a solution for detecting cyber threats,
both known and novel ones, while packaging everything in a
software which is easy to distribute on as many devices as
possible. The first target was achieved by using an anomaly
detection technique and the latter by containerization.

The proposed NIDS has the purpose of using an MLP
classifier trained on available datasets for labeling generated
traffic. It is composed of two main components, the TRex
and Device Under Test (DUT) Docker containers. The TRex
container is the one generating the network traffic and the
DUT is capturing the traffic using tcpdump and extracting the
needed flow-based features from it using the Zeek tool. These
extracted features are further processed using a python script
in order to generate the entire subset of features needed for
the input of the MLP. In the end, the features are fed to the
MLP trained on the UNSW-NB15 dataset and it classifies the
generated data points as either normal or anomalies. The flow
and architecture of the proposed method can be seen in Fig.
1. As it can be seen in the previously mentioned figure, two
networks were used in order to send normal traffic on one of
them and abnormal on the other. The traffic was generated
using scripts provided by the TRex tool, namely stl/imix.py
for the normal traffic and stl/syn attack.py for the anomalies.

Fig. 1: Proposed testbed for NIDS.

A. Models

1) Isolation Forest: An unsupervised learning algorithm
designed to identify outliers by uncovering the dataset’s un-
derlying structure. It consists of multiple tree structures that
recursively divide the dataset based on its features. In each
iteration, a feature is randomly selected, and the data is split
using a randomly chosen value within the range of that feature.

This process continues until the entire dataset is divided,
creating a single tree within the forest. Anomalous data points
typically have much shorter paths from the root to a leaf
compared to normal data points, as they are more easily
isolated. All in all, the algorithm is very good at handling
high-dimensional data, as it does not need more data points
alongside the addition of features. It also is very efficient,
therefore it scales very well to high data sizes. There are
however some drawbacks, the model requires more splits when
data points are very close to each other and it also has to be
told what proportion of anomalies to expect. Also, even though
the model gives an anomaly score, it is hard to tell how it got
to it because of the large number of trees in the forest. The
IF algorithm is a very good anomaly detector as long as the
parameters are tuned right.

2) Multi-layer Perceptron: An MLP is the simplest form of
a neural network. It represents a sequence of layers, each of
them composed out of a collection of neurons computing an
output (see 1) using the given input. The output of one layer is
fed as the input of the next layer, with the first layer being the
data we want to classify or make predictions out of and the
last layer being the output of the network for the desired task.
All the layers between the input and output ones are called
hidden layers.

y = f(

n∑
i=1

xiwi + b) (1)

The forward pass is the process during which data passes
from the input layer to the output layer and the result is
computed for the desired data. The backward pass refers
to the process of moving through the network in the other
way, such that during the process, the gradients are computed
through backpropagation or backward propagation of errors.
After computing the gradients, the learnable parameters are
optimized. The gradients are a higher-extension of the deriva-
tive and the way they help at updating the parameters starts
from the reasoning that going in the direction opposite to the
gradient, we should arrive at the minimum of the loss function,
the equation for the process is described in (2). The learning
rate is the step size with which we update the parameter x in
order to get to the minimum loss.

x = x− learning rate ∗ gradient (2)

There are other more complex optimizers than the simple
gradient descent such as RMSProp and Adadelta, which dy-
namically adapt the learning rate per parameter and follow the
typology of the loss curve better. They are optimal to use for
high-dimensional problems or for situations in which the data
is sparse. The most popular optimizer is the Adam optimizer,
which, alongside RMSProp and Adadelta implements accu-
mulated squared gradients and momentum, but in addition to
the latter ones it also facilitates more stable learning through
the incorporation of bias correction. That is why the Adam
optimizer is usually the go-to optimizer across a wide range
of problems. This being said, there is no perfect optimizer and
for each problem it has to be checked which of the available
optimizers perform the best, each of them having their own
pros and cons.

3) Autoencoder: Autoencoders are neural networks de-
signed to discover low-dimensional representations of high-
dimensional data and to reconstruct the input out of this
low-dimensional representation. They are made out of two
pieces: an encoder and a decoder. The encoder has the task
of reducing the dimensions of the data given as an input
and the decoder must reconstruct the initial data as best as
it can starting from the encoded set. This principle stands at
the foundation of building an anomaly detection module. The
general architecture of an autoencoder can be seen in Fig. 2.

The compression and decompression functions implemented
by neural networks are lossy and, for the most part, unsu-
pervised. The entire network is typically trained as a single
unit. The loss function is generally either the mean-squared
error or cross-entropy between the output and the input,
referred to as the reconstruction loss, which penalizes the
network for producing outputs that differ from the initial data.
Since the encoding (the output of the central hidden layer) is
significantly smaller in dimension than the input, the encoder
must decide what information to discard. The encoder learns
to retain as much relevant information as possible within the

Fig. 2: Autoencoder architecture.

limited encoding, discarding the irrelevant parts intelligently.
The decoder, in turn, learns to reconstruct the input accurately
from the encoding. Another way of constraining the represen-
tation besides the size of the hidden layers is the addition of a
sparsity constraint on them, such that in the end, fewer units
are active at any given moment. The model which results from
this procedure is called a sparse autoencoder.

IV. EXPERIMENTAL ASSESSMENT

A. Datasets

An important part of developing a NIDS is training the
models on relevant datasets. One of the most used datasets
in literature, the KDDCUP99 dataset has been developed by
Stolfo et al.[11] using the captures made during the DARPA’98
IDS program. The dataset was comprised of nine weeks in
which raw tcpdump files were generated. The set consists of
41 features of 4,900,000 connection vectors, labeled as an
attack or as normal traffic. Each attack record is labeled as one
of four attack types: Denial of Service (DoS), User to Root
Attack (U2R), Remote to Local Attack (R2L), and Probing
attack [12].

A more robust dataset, which better simulates real traffic
and cyber attacks, is the UNSW-NB15 dataset created by
Moustafa and Slay[13]. This dataset presents a comprehen-
sive blend of realistic network activities and synthetic attack
behaviors. Generated using IXIA PerfectStorm and captured
with tcpdump, it comprises 100 GB of network traffic data.
The traffic was generated from three virtual servers, two of
them generating normal traffic and the third one generating
abnormal traffic which was taken according to the CVE site to
produce a real modern thread environment. Feature extraction,
facilitated by Argus and Bro-IDS tools, yielded 49 features
across 2,540,044 records in four CSV files. The dataset
categorizes attack types into nine groups, including Fuzzers,
Analysis, Backdoor, DoS, Exploit, Generic, Reconnaissance,
Shellcode, and Worm. These classifications offer insights into
various network threats.

B. Data analysis and preprocessing

We started by analyzing the data points by looking at the
distribution of the labels in the datasets. The task we tried to
solve was one of binary classification, that being determining
whether a point is either 0, if the data point is normal, or 1, in
the case it is anomalous. We converted all of the attack labels
to the values of 1 and the normal traffic to 0 and the result
for KDDCUP99 can be seen in Fig. 3. Here we can see that
the number of anomalies surpasses the normal data points four
times.

Fig. 3: Distribution of normal(0) and anomalous(1) data for
KDDCUP99

For the UNSW-NB15 dataset, which already has the test and
train sets split, the results can be seen in Fig. 4 and Fig. 5. This
set is almost balanced while the train one has a distribution
of roughly 2:1 for anomalies with respect to normal points.

Fig. 4: Distribution of normal(0) and anomalous(1) data for
UNSW-NB15 test set.

We tested both under and oversampling techniques to bal-
ance the datasets. We concluded that for the tuned models,
whether the sets were balanced or not, made no difference in
terms of performance.

For both the datasets and for all of the algorithms used, We
had to encode the categorical variables into numerical values
and this was done using the LabelEncoder from the scikit-
learn library.

Fig. 5: Distribution of normal(0) and anomalous(1) data for
UNSW-NB15 train set.

C. Train, test, validation splitting

As the UNSW-NB15 dataset already has pre-split test and
train sets, We only split the test set into test and validation
ones, with a 70/30 ratio. The test data was split on both
datasets only for the MLP and Autoencoder models as the
IF one does not use the validation split. For the KDDCUP99
dataset, the train-test split ratio was 80/20 with the test set
being further split as previously explained.

D. Tuning

For hyperparameter tuning, we have chosen the Parame-
terGrid provided by scikit-learn for iterating through differ-
ent combinations of parameters and the cross val score also
provided by scikit-learn for conducting the validation of the
parameters [14]. The validation procedure is a k-fold cross-
validation one, which is a thorough and robust strategy as
it partitions the dataset into k bins (determined by the cv
parameter) iterating through them with each one being the
testing set while the rest are the training one.

E. Isolation Forest

For the IF model, the parameters we achieved the best
results with for the KDDCUP99 dataset were:

• number of estimators = 100(the number of base estima-
tors/trees in the forest)

• contamination = 2e-2(the proportion of anomalous data
in the trained set)

• Max features = 0.8(% of features to draw from the dataset
to train each base estimator)

For automatically determining the threshold above which
points are considered anomalies, we trained a Logistic Re-
gression (LR) model on the computed average path lengths
(anomaly scores) and the actual outputs. The LR has the same
equation as the sigmoid function (3).

f(x) =
1

1 + e−x
(3)

As we will later see, the IF algorithm was not able to
successfully classify the UNSW-NB15, no matter how we
tuned it, because it was not able to separate normal and
anomalous points in terms of average path lengths.

F. Autoencoder

For the KDDCUP99 the optimal parameters for the autoen-
coder are:

• batch size = 64
• epochs = varied due to EarlyStopping
• intermediate dimensions = 8, 4
• latent dimension (bottleneck) = 2
• hidden layers activation function = ReLU
• output layer activation function = sigmoid
• hidden layers kernel initializer = he uniform
• kernel regularizer = L2
• optimizer = Adam with MAE loss function
The autoencoder was used in order to compute the error

between the reconstructed inputs and the actual inputs and
determine which points are anomalies or not based on this
error [15]. For computing the error, the Mean Squared Error
(MSE) (4) was computed between the inputs and reconstruc-
tions after which we computed the Median Absolute Deviation
(MAD) score of the errors described in [16] as (5) where Ŷ
is the median of the data. This results in a more optimal way
of computing the errors [16].

Similarly, as for the IF model, the LR model was used
to automatically determine the threshold separating anomalies
and normal points. And even with LR added, as in the case
of the IF, the Autoencoder was not able to separate the points
as normal or anomalous for the UNSW-NB15 dataset.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (4)

MAD = median(|Yi − Ŷ |) (5)

G. MLP

For the MLP, the optimal model had the following param-
eters for the KDDCUP99 dataset:

• batch size = 64
• epochs = varied due to EarlyStopping
• number of hidden layers = 2
• number of neurons per hidden layer = 32
• hidden layers activation function = ReLU
• output layer activation function = softmax
• hidden layers kernel initializer = he uniform
• kernel regularizer = L2
• optimizer = Adam with 1e-3 learning rate and categorical

cross-entropy loss function
The only difference between the model for the KDD set

and the UNSW-NB15 one being the kernel initializer for
the hidden layers which in this case was chosen to be the
glorot uniform one.

H. Performance metrics

For talking about performance metrics we have to define
the terms forming a confusion matrix:

• True Positive (TP): Predicted output and real one are
positive

(a) No feature selection (b) Feature selection

Fig. 6: Comparison of normalized distribution of average path lengths for Isolation Forest on the KDDCUP99 set.

• True negative (TN): Predicted output and real one are
negative

• False negative (FN): Predicted output is negative and real
one is positive

• False positive (FP): Predicted output is positive and real
one is negative

F1-measure =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

Using these terms we can define the following metrics
used to evaluate the models in this paper: Accuracy, which
is defined by (7), precision defined by (8), and recall as (9).
The latter is also known as True Positive Rate (TPR).

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

It is important to note that accuracy as a standalone is not the
best descriptor of a model. A better choice is the F1 measure
as in order to have a good F1 score, the model needs to have
a good precision as well as a good recall score. The formula
for the F1-measure can be seen in (6).

V. RESULTS AND DISCUSSION

The results of the methods proposed in this paper can be
seen in comparison to the literature in Table I.

A. Isolation Forest

1) KDDCUP99: For this dataset, on the IF forest algorithm,
it can be seen how important feature selection can be in
the context of the performance of a model. Its impact on
the performance of this specific model is highlighted in the
distribution of the average path lengths for anomalies and
normal points of the model trained on feature-selected data
next to the model trained on the whole dataset. The comparison
is shown in Fig. 6. It can be clearly seen from the figure that,
first of all, the anomalies have a smaller average path length
than normal points which is as they should. Secondly, when
no feature selection is applied the clean and anomaly points
overlap each other around the value 0.18 in terms of average
path length determined by the IF model. On the other hand,
when feature selection was applied, the model was better at
separating the normal from the anomalous points.

The results of this model classifying the test set are F1 =
95.06%, accuracy = 99.79%, precision = 91.2%, recall =
98.97%. This is a very good result, especially looking at the
recall and accuracy of the model which are very high as they
are not affected by the FP (the accuracy is but very slightly
due to the big imbalance in the normal points and anomalies).
And even though there are some FP results, the model can be
considered as very satisfactory in terms of performance.

2) UNSW-NB15: If the Isolation Forest algorithm alongside
the LR could well classify the data points for the KDDCUP99
dataset after it has been tuned and feature selection was done,
it is not the case for the algorithm classifying the UNSW-
NB15 data. Looking at the distribution of the path lengths
for the model trained with and without feature selection (Fig.
7) this time we can note that, firstly, for the case with no
feature selection the normal and anomalous data points are
indistinguishable from one another and this does not improve

TABLE I: Literature NIDS results compared to the proposed approach.

Author Model Dataset no. of features Feature selection method Performance (accuracy, precision, recall)

Pu et al. [17] ACO-SVM KDDCUP99 Not mentioned Not applied -, 99.2%, -
Ma et al. [18] BPSO-SVM KDDCUP99 variable size BPSO 99.44%, - , -

Rajagopal et al. [4] Stacked Classifier UNSW-NB15 11 IG and hashing 94%, 96%, 93%
Lin et al. [19] CANN KDDCUP99 6 Not applied 99.76%, -, -

19 99.46%, -, -
Hassan et al. [20] LSTM UNSW-NB15 Not Mentioned CNN 97.17%, -, -

Lv et al. [21] ELM+DE+Gravitational Search UNSW-NB15 Not mentioned PCA 89.01%, - , -
KDDCUP99 96.59%, -, -

Khammassi and Krichen [22] DT UNSW-NB15 variable size GA-LR 92.7%, - , -
KDDCUP99 99.4%, -, -

Waheed Ali H. M. et al. [23] HADMLP KDDCUP99 variable size MOABC 97.2%, - , -
Yin et al. [24] MLP UNSW-NB15 23 IGRF-RFE 84.24%, - , -

Ghanem and Jantan [25] EBAT-MLP KDDCUP99 Not applied 91.1%, - , -
UNSW-NB15 96.86%, - , -

This paper MLP UNSW-NB15 11 [4] Not applied 94.68%, 84.12%, 97.21%
MLP KDDCUP99 15 [26] 99.85%, 99.96%, 99.76%

IF KDDCUP99 99.79%, 91.2%, 98.97%
Autoencoder KDDCUP99 99.84%, 94.3%, 92.8%

(a) No feature selection (b) Feature selection

Fig. 7: Comparison of normalized distribution of average path lengths for Isolation Forest on the UNSW-NB15 set.

much when conducting the feature selection on the dataset.

B. MLP
1) KDDCUP99: The results for this model are F1 =

99.86%, accuracy = 99.85%, precision = 99.96%, recall =
99.76%. These numbers are from a 10-run average of the re-
sults. The model was trained also on the whole dataset besides
the balanced one which is present in the confusion matrix, but
there were no notable differences. The performances for this
model are almost perfect, which had to be double-checked,
but there is no leaky information in the process. It is to be
noted that many literature results surpass 99% accuracy.

2) UNSW-NB15: For this the metrics are F1 = 90.19%,
accuracy = 94.68%, precision = 84.12%, recall = 97.21%.
The MLP was able to classify the data from the UNSW-NB15
dataset in a satisfactory manner, the only downside of the
model being the somewhat high FP rate, which we were not
able to compensate through any of the tuning that we have

done to the model. This result underlines the improved ability
of Neural Network models to find connections between data
points that cannot be found using traditional Machine Learning
models.

C. Autoencoder

The results for the autoencoder for the KDDCUP99 set can
be seen in Table I. This is once again a good result compared
with the literature. As for the UNSW-NB15 set, the model
was once again, as in the case of the IF, not able to coherently
detect the anomalies.

VI. CONCLUSION

In this paper, we proposed an architecture for an anomaly-
based NIDS and validated the model’s performance using well-
known datasets. The proposed models demonstrated the ability
to classify network traffic into anomalies and normal points.
The results were consistent with other models in literature.

However, of the three models proposed, only one produced
coherent results for the UNSW-NB15 dataset, highlighting
the dataset’s more complex structure and its closer simulation
of real-world scenarios. In future work, we aim to integrate
a SIDS into the architecture to enhance traffic classification
efficiency. While we utilized the TRex traffic generator in
these experiments, it was less versatile than anticipated. Con-
sequently, exploring other solutions like IXIA PerfectStorm,
known for generating close to real traffic and more robust
attack scenarios, would be a valuable objective. Moreover,
we plan to compare our IDS with an existing and publicly
available software on the market.

ACKNOWLEDGMENT

An initial expanded version was presented by David Oroian
as B.Sc. in Telecommunications thesis at Technical University
of Cluj-Napoca in July 2024.

REFERENCES

[1] A. Pinto, L.-C. Herrera, Y. Donoso, and J. A. Gutierrez, “Survey
on Intrusion Detection Systems Based on Machine Learning
Techniques for the Protection of Critical Infrastructure,” Sen-
sors, vol. 23, no. 5, p. 2415, Feb. 2023.

[2] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “An Ensemble
Intrusion Detection Technique Based on Proposed Statistical
Flow Features for Protecting Network Traffic of Internet of
Things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4815–4830, Jun. 2019.

[3] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and
A. Alazab, “A novel Ensemble of Hybrid Intrusion Detection
System for Detecting Internet of Things Attacks,” Electronics,
vol. 8, no. 11, p. 1210, Oct. 2019.

[4] S. Rajagopal, P. P. Kundapur, and K. S. Hareesha, “A Stacking
Ensemble for Network Intrusion Detection Using Heteroge-
neous Datasets,” Security and Communication Networks, vol.
2020, pp. 1–9, Jan. 2020.

[5] W. Ma, H. Qu, and J. Zhao, “Estimator with forgetting factor of
correntropy and recursive algorithm for traffic network predic-
tion,” in 2013 25th Chinese Control and Decision Conference
(CCDC). Guiyang, China: IEEE, May 2013, pp. 490–494.

[6] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
Internet of Things for network forensic analytics: Bot-IoT
dataset,” Future Generation Computer Systems, vol. 100, pp.
779–796, Nov. 2019.

[7] D. H. Wolpert, “Stacked generalization,” Neural Networks,
vol. 5, no. 2, pp. 241–259, Jan. 1992.

[8] M. J. Van Der Laan, E. C. Polley, and A. E. Hubbard, “Super
Learner,” Statistical Applications in Genetics and Molecular
Biology, vol. 6, no. 1, Jan. 2007.

[9] K. Kerwin and N. D. Bastian, “Stacked Generalizations in
Imbalanced Fraud Data Sets using Resampling Methods,” Apr.
2020.

[10] D. Oroian, “Anomaly-Based Network Intrusion Detection Sys-
tem Using Machine Learning Techniques,” BSc, Technical
University of Cluj-Napoca, Jul. 2024.

[11] S. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis, and P. Chan,
“Cost-based modeling for fraud and intrusion detection: Results
from the JAM project,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00, vol. 2.
Hilton Head, SC, USA: IEEE Comput. Soc, 1999, pp. 130–
144.

[12] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in 2009 IEEE

Symposium on Computational Intelligence for Security and
Defense Applications. Ottawa, ON, Canada: IEEE, Jul. 2009,
pp. 1–6.

[13] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive
data set for network intrusion detection systems (UNSW-NB15
network data set),” in 2015 Military Communications and
Information Systems Conference (MilCIS). Canberra, Australia:
IEEE, Nov. 2015, pp. 1–6.

[14] M. A. H. Zamrai, K. M. Yusof, and M. A. Azizan, “Random
Forest Stratified K-Fold Cross Validation on SYN DoS Attack
SD-IoV,” in 2024 7th International Conference on Communi-
cation Engineering and Technology (ICCET). Tokyo, Japan:
IEEE, Feb. 2024, pp. 7–12.

[15] A. Sridhar and K. A. Suman, Beginning Anomaly Detection
Using Python-Based Deep Learning. APress, 2024.

[16] “Detection of Outliers,” National Institute of Standards
and Technology, 2024, https://www.itl.nist.gov/div898/handboo
k/eda/section3/eda35h.htm.

[17] J. Pu, L. Xiao, Y. Li, and X. Dong, “A Detection Method of
Network Intrusion Based on SVM and Ant Colony Algorithm,”
in Proceedings of 2012 National Conference on Information
Technology and Computer Science. China: Atlantis Press, 2012.

[18] J. Ma, X. Liu, and S. Liu, “A New Intrusion Detection Method
Based on BPSO-SVM,” in 2008 International Symposium on
Computational Intelligence and Design. Wuhan, China: IEEE,
Oct. 2008, pp. 473–477.

[19] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “CANN: An intrusion
detection system based on combining cluster centers and nearest
neighbors,” Knowledge-Based Systems, vol. 78, pp. 13–21, Apr.
2015.

[20] M. M. Hassan, A. Gumaei, A. Alsanad, M. Alrubaian, and
G. Fortino, “A hybrid deep learning model for efficient intrusion
detection in big data environment,” Information Sciences, vol.
513, pp. 386–396, Mar. 2020.

[21] L. Lv, W. Wang, Z. Zhang, and X. Liu, “A novel intrusion
detection system based on an optimal hybrid kernel extreme
learning machine,” Knowledge-Based Systems, vol. 195, p.
105648, May 2020.

[22] C. Khammassi and S. Krichen, “A GA-LR wrapper approach
for feature selection in network intrusion detection,” Computers
& Security, vol. 70, pp. 255–277, Sep. 2017.

[23] G. Waheed Ali H. M., E.-E. Yousef A. Baker, A. Mohamed,
T. Mohammad, A. Nayef A. M., N. Abdullah B., A. Nibras, and
A.-w. Ola A., Metaheuristic Based IDS Using Multi-objective
Wrapper Feature Selection and Neural Network Classification.
Singapore: Springer Singapore, 2021, pp. 384–401.

[24] Y. Yin, J. Jang-Jaccard, W. Xu, A. Singh, J. Zhu, F. Sabrina,
and J. Kwak, “IGRF-RFE: A hybrid feature selection method
for MLP-based network intrusion detection on UNSW-NB15
dataset,” Journal of Big Data, vol. 10, no. 1, Feb. 2023.

[25] W. A. H. M. Ghanem and A. Jantan, “A new approach for
intrusion detection system based on training multilayer percep-
tron by using enhanced Bat algorithm,” Neural Computing and
Applications, vol. 32, no. 15, pp. 11 665–11 698, Aug. 2020.

[26] L. Li, H. Zhang, H. Peng, and Y. Yang, “Nearest neighbors
based density peaks approach to intrusion detection,” Chaos,
Solitons & Fractals, vol. 110, pp. 33–40, May 2018.

	Introduction
	Related Work
	Proposed Methodology
	Models
	Isolation Forest
	Multi-layer Perceptron
	Autoencoder

	Experimental Assessment
	Datasets
	Data analysis and preprocessing
	Train, test, validation splitting
	Tuning
	Isolation Forest
	Autoencoder
	MLP
	Performance metrics

	Results and Discussion
	Isolation Forest
	KDDCUP99
	UNSW-NB15

	MLP
	KDDCUP99
	UNSW-NB15

	Autoencoder

	Conclusion

