
Evaluation Techniques for Long Short-Term
Memory Models: Overfitting Analysis and

Handling Missing Values

Roland Bolboacă1[0000−0002−4825−8786], Piroska Haller1[0000−0002−5611−2429],
and Bela Genge1[0000−0003−1390−479X]

“George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of
Târgu Mureş, 540139 Târgu Mureş, Romania

{roland.bolboaca,piroska.haller,bela.genge}@umfst.ro

Abstract. Long Short-Term Memory models have demonstrated their
effectiveness across various domains, providing solutions to numerous
problems. In time-series data originating from process monitoring, Long
Short-Term Memory models are particularly useful due to their capabil-
ity to capture and represent spatial and temporal dependencies within
the data. However, when it comes to modeling nonlinear systems de-
scribed by differential equations, the relationship between input and
output variables cannot be established solely by considering the current
inputs. A well-known technique called Teacher Forcing enables the in-
clusion of previous output true values as additional inputs to Recurrent
Neural Networks. However, applying this technique poses a significant
challenge: the resulting models might tend to excessively rely on the pre-
vious true value, leading to predictions that replicate the previous value
at each time step. As a solution, this paper presents a novel methodology
to assess whether these models suffer from such overfitting to the previ-
ous true value. Additionally, this paper introduces a method to evaluate
the robustness of these models against missing values, which may oc-
cur due to unforeseen events such as communication faults or erroneous
sensor readings. The experimental results, conducted on the Tennessee
Eastman Process Dataset, demonstrate the effectiveness of our proposed
solutions in terms of overfitting tests and handling missing values.

Keywords: Long Short-Term Memory · Evaluation Metrics · Overfit-
ting · Missing Values · Time-Series · Process Modeling

1 Introduction

The usage of Long Short-Term Memory (LSTM) models [12] has gained signifi-
cant popularity in recent years due to their demonstrated effectiveness and im-
proved performance across diverse domains including medicine [16], finance [5],
natural language processing [28] and various industrial domains [26].

For neural networks to effectively capture the temporal dependencies and
dynamics present in control systems, that can be described by differential equa-
tions, the current inputs alone may not be sufficient. In such instances, the



2 Bolboacă et al.

previous outputs or states of the modeled system may provide important infor-
mation about the system’s behavior and be necessary for accurate predictions of
the subsequent outputs [18,21]. In such systems, the previous output or system
state can be seen as an additional input that helps the neural network capture
the system’s behavior and dynamics over time [8].

Two recent papers [2, 3] proposed a modified version of Long Short-Term
Memory (LSTM) with Teacher Forcing (TF) [29], named LSTMTF, which uti-
lizes the previous ground truth output values as input at each time-step during
both training and inference. In this manner, LSTMTF effectively addresses a
pair of challenges: the vanishing and exploding gradient problem [10], and the
issue of Exposure Bias [25]. Their proposed solution is utilized for industrial
systems modeling, restricted only by the availability of the output ground truth
observations. Moreover, in [3] the same authors showed that such models can
outperform the classical LSTM models, even with reduced architectures. How-
ever, one major issue with the above solution is that such models might overfit
to the previous output ground truth value. Consequently, at each step, they
might predict only close to the previous ground truth value, while ignoring the
spatio-temporal relationships between other exogenous inputs.

To address this type of overfitting, further named y-overfitting, we are testing
if feeding the previous output ground truth value as input, during training, causes
the model to adjust the parameters in such a way that during inference each new
prediction will be close or equal to the previous ground truth value. Specifically,
this implies that the model becomes a simple naïve forecasting method [13].
Furthermore, in the current context, considering that the trajectory of nonlinear
systems describing complex processes incorporates the previous system states
together with the current system inputs, a naïve approach to prediction leads
to unrealistic and unreliable results. In this direction, we propose an overfit-
ting testing methodology inspired by sensitivity analysis [30]. To analyze the
y-overfitting of the trained model, we generated different scenarios by sequen-
tially disabling inputs or setting constant ground truth values for the output
variable. This is followed by measuring the changes in the model’s prediction
error distribution on new and unseen data originating from the same genera-
tive process. Assuming that in such scenarios the model will naively predict the
previous ground truth value every time, the distribution of the prediction error
will not suffer changes, signaling that the model is y-overfitting. Our proposed
approach outputs an overfitting score, measuring the distance between the pre-
diction error distribution in various scenarios, using three distribution distance
metrics.

Additionally, for the same model, it is assumed that the output ground truth
values are available during both training and inference. Nevertheless, a signif-
icant issue is raised in our approach when the output ground truth values are
missing due to unforeseen events (e.g., communication faults and erroneous sen-
sor readings). As a solution to this issue, we are proposing an approach that does
not require using any additional models for imputation, but rather use the same



Evaluation Techniques for Long Short-Term Memory Models 3

model and switch between using the true output values to using the predicted
values, for short periods.

The rest of the paper is structured as follows. Section 2 provides an overview
of the background and related studies. Section 3 delineates our proposed ap-
proaches in detail. The experimental assessment methodology and the results
are presented in Sections 4 and 5 respectively. Section 6 encompasses discus-
sions pertaining to the results, and ultimately concludes the paper.

2 Background and Related Studies

In short, TF denotes a training algorithm for RNNs, where during training the
output (e.g., response variable) ground truth value is fed as additional input
to the model while during inference the model takes the prediction from the
previous time step as an extra input. However, vanilla RNNs suffer from what
is known as vanishing and exploding gradient [10]. Moreover, TF has its draw-
backs, namely Exposure Bias. Exposure Bias appears as a result of a model
being trained with the previous output ground truth value, but tested using the
predicted value from the previous time step. As the distribution of the data that
the model sees during training might differ from what it sees during inference
causes the model to yield inaccurate and unreliable predictions. Despite the fact
that TF has been applied in numerous fields [1, 15], there has been no investi-
gation into the fact that LSTMs trained with TF might overfit to the previous
ground truth value. However, authors who included models trained with TF in
their work identified that such models might overfit the training data [15,31] or
might suffer from Exposure Bias [20].

Nguyen et al. [19] proposed an RNN based approach for predicting the tran-
sient behavior of a nonlinear electronic circuit. In their work, the authors suggest
that TF might improve training convergence, but it might also lead to overfit-
ting. Song et al. in [1] proposed an adversarial training scheme for autoregressive
sequence generative models used for text generation. In this paper, the authors
offer solutions for dealing with Exposure Bias and highlight the fact that TF
might cause overfitting. Nicolai and Silfverberg [20] proposed a novel adaptation
to the TF technique, named “student forcing”. This approach involves substi-
tuting the model’s predicted outputs with accurate labels for a portion of the
training examples, to mitigate the adverse effects of Exposure Bias and overfit-
ting. Wang and Lee [27] also found that Generative Adversarial Models, used
for text prediction, might overfit the training data.

This paper addresses the challenge of y-overfitting in LSTMs, where the
output target value is fed back as input during both training and testing. In
comparison to previous works, our proposed solution introduces a quantitative
evaluation on overfitting.

Moving on to related studies in the direction of missing values. In the past
decades, this research field has been of high interest to a lot of researchers,
and over the years various solutions have been proposed for handling missing
values in data originating from multiple domains. The work of Enders, Craig K,



4 Bolboacă et al.

Applied Missing Data Analysis [9] offers a comprehensive overview of the field,
including missing data patterns, missing data mechanisms, and also a systematic
overview of the literature, analyzing the proposed solutions from the past 35
years. In a similar direction, other review papers offer comprehensive summaries
of recent advances in the field [14]. These surveys point out different missing data
patterns and two common approaches for dealing with missing values, namely
conventional methods (e.g., ignoring or removing values) and modern methods
(e.g., data imputation techniques, that is, replacing the missing values using
various techniques).

Among recently proposed solutions for data imputation, we find the work
of Han and Kang [11]. Here, the authors propose a dynamic imputation tech-
nique aimed at improving the training procedures of neural networks. The pro-
posed approach involves the training of a neural network using a dataset that
features dynamic imputations. Specifically, the model employs a layer that gen-
erates distinct values for identical missing slots during the training process. This
methodology has the potential to improve the network’s ability to generalize and
accurately predict values for incomplete data points.

Cui et al. [6] introduced a stacked bidirectional LSTM network architecture
for network-wide traffic state prediction. Their proposed solution involves the
addition of an imputation unit inside the LSTM cell, prior to the four LSTM
gates. This imputation unit estimates the missing values in each time step using
the previous hidden and cell states. In a similar approach, Che et al. [4] proposed
a Gated Recurrent Unit (GRU) that estimates missing values using a decay
mechanism applied to the latest available value.

Lin et al. [17] compared the imputation performance of deep neural net-
works (i.e., Multilayer Perception, Deep Belief Network) with other imputation
techniques, such as mean value replacement, K-Nearest Neighbors, Classification
and Regression Trees, and Support Vector Machines. Their results revealed that
the deep neural networks outperformed the other techniques on 14 datasets. In
particular, between the two deep neural networks, the best performance was ob-
tained by the Deep Belief Network. Furthermore, in the same paper, the authors
proposed two differently ordered combinations of data discretization.

Compared to other solutions, we emphasize that our proposed metric can
be used to quantify the effects of imputing missing values. This metric offers
the possibility of comparing the prediction efficiency while using not only our
imputation method but also other methods as well.

3 Proposed Approach

3.1 Long Short-Term Memory and Teacher Forcing

LSTMs incorporate memory units that are capable of learning long and short-
term dependencies in time-series data. A standard LSTM layer is composed of
blocks that incorporate memory cells and three gates (e.g., input, output, forget
gates). Additionally, each block has two recurrent connections (e.g., hidden state



Evaluation Techniques for Long Short-Term Memory Models 5

and cell state), where the hidden state and cell state represent the short-term
and long-term memory respectively. The three gates regulate the information
flow from and to the memory cell. As the name suggests, the forget gate controls
the discarded information, the input gate regulates the information that is to be
saved and finally, the output gate computes the current output of the cell.

When training RNNs using TF, a process is followed where the output target
value from the previous time step, known as the ground truth output y(t − 1),
is used as input for the current time step. However, during testing or inference,
instead of using the ground truth, the network’s own output ŷ(t− 1) is used as
input. This approach of using the network’s own outputs as input during testing
has some drawbacks. One major issue is that the inputs seen by the network
during training can be significantly different from the inputs encountered during
inference, leading to a phenomenon called Exposure Bias. The original method-
ology of TF assumes that the ground truth values will not be accessible after
the training phase. However, the model employed in this paper (e.g. LSTMTF),
as originally proposed in [3], incorporates the use of the previous output ground
truth value, denoted as y(t− 1), both during training and inference stages. For
a more detailed description of LSTMs with TF, the reader can consult the fol-
lowing papers [2, 3].

3.2 Overfitting Tests

To develop the overfitting tests, we begin with the premise that LSTM models
with TF overfit the previous output ground truth value. Consequently, during
inference, these models predict close to the previous ground truth value, ignoring
the spatio-temporal relationship between the rest of the inputs and the output
variable, this is y-overfitting.

If a model y-overfits, it introduces the following assumptions. First, disabling
any of the additional inputs would not have any influence on the model’s perfor-
mance, as it “relies” only on the previous output ground truth value to make new
predictions. Second, disabling all additional inputs would not affect the model’s
performance, based on the same assumption as above. Third, setting the output
ground truth value to a constant would not affect the performance, as the model
would only predict close to the previous ground truth value.

We can formally define these assumptions as follows. LetXe denote the vector
of exogenous inputs, where [x1(t), x2(t), ..., xn(t)] ∈ Xe represent the n exoge-
nous inputs at time t. The vector containing all the input variables, denoted as
X, can be written as X = [Xe, y(t− 1)]. Let Ŷ denote the vector that contains
the model’s predictions, where [ŷ(0), ŷ(1), ..., ŷ(t)] ∈ Ŷ . Let Y denote the vector
of ground truth values, where [y(0), y(1), ..., y(t)] ∈ Y . Likewise, let e and ê de-
note the computed prediction error vectors between Y and Ŷ , where the former
represents the model’s measured error in normal conditions and the latter repre-
sents the model’s measured error during the y-overfitting tests. Additionally, let
E(e) and E(ê) denote the distributions of e and ê respectively. Assuming that the
model was trained accordingly, both e and ê will follow a Gaussian Distribution
with a mean value close to zero.



6 Bolboacă et al.

Assumption 1 If the model is y-overfitting then if any input sequence xi ∈ X
is disabled and y is not changed then E(e) ≈ E(ê), ∀i ∈ [1, n].

Assumption 2 If the model is y-overfitting then if all input sequences xi ∈ X
are disabled and y is not changed then E(e) ≈ E(ê), where i ∈ [1, n].

Assumption 3 If the model is y-overfitting then if all ground truth values y(t) =
c (constant), ∀t, and all xi ∈ X are not changed then E(e) ≈ E(ê).

To quantify the distance between E(e) and E(ê), three distance metrics are
used, namely (i) Energy Distance (ED) [24], (ii) Wasserstein Distance (WD) [22],
and (iii) the Histogram Euclidean Distance (HD). The motivation behind choos-
ing distribution distance metrics lies in the fact that even though both series
(e.g., training and testing) originate from the same generative process and have
the same distribution, the individual trajectories are inherently different. There-
fore, measuring the point-by-point or sequence-by-sequence distance between the
training and testing prediction errors yields unreliable results.

Algorithm 1: y-overfitting Tests
Input: Str - Training Dataset (Xtr, Ytr ⊂ Str)

Stst - Testing Dataset (Xtst, Ytst ⊂ Stst)
w - Prediction Window
NrOfScenarios - y-overfitting Scenarios
DM - The Selected Distance Metric

Result: OS - y-overfitting Score
1 begin
2 mdl← @TrainNetwork(Str);
3 Ŷtr ← @Predict(Xtr);
4 e← Ytr − Ŷtr;
5 θ ← @ComputeThreshold(mdl, e, Stst, w,DM);
6 for i← 1 to NrOfScenarios do
7 DV ← [] ; /* Distance Vector */
8 index← 1;
9 mdl← @InitializeScenario(mdl, i);

10 for j ← 1 to len(Xtst − w) by w do
11 Ŷtst ← @Predict(Xtst[j : j + w]);
12 ê← Ytst[j : j + w]− Ŷtst[j : j + w];
13 DV [index]← @Distance(DM, e, ê);
14 DV [index]← DV [index]/θ;
15 index← index+ 1;
16 end
17 OS[i]← mean(DV );
18 end
19 return OS;
20 end

Algorithms 1 and 2 describe the developed y-overfitting tests and the deci-
sion threshold computation. Here, Str and Stst denote the training and testing



Evaluation Techniques for Long Short-Term Memory Models 7

datasets, respectively. Both datasets include the sets of inputs and outputs, so
that Xtr, Ytr ⊂ Str and Xtst, Ytst ⊂ Stst. Given w a prediction window, a se-
lected distance metric, and a testing scenario, the first Algorithm will output a
y-overfitting score. Here, the testing scenarios represent the three assumptions
from above.

As shown in Algorithm 1, the model is trained and tested on the training
data set, this is followed by the computation of e (e.g., the training prediction
error). In what follows in Algorithm 1, the function @Distance() computes the
distance between e and ê using one of the distance metrics (i) – (iii) described
above. The threshold computation is illustrated in Algorithm 2. This involves
predicting over the testing dataset, using a w window, and computing a distance
vector between the prediction error on each window and the prediction error
from the training dataset. Finally, the threshold is set to be the maximum from
all the computed distances.

Algorithm 2: Threshold Computation
Input: mdl - Trained Model

e - Training Prediction Error
Str - Testing Dataset (Xtst, Ytst ⊂ Stst)
w - Prediction Window
DM - The Selected Distance Metric

Result: θ - Threshold
1 begin
2 index← 1;
3 DV ← [] ; /* Distance Vector */
4 for i← 1 to len(Xtst − w) by w do
5 Ŷtst ← @Predict(Xtst[i : i+ w]);
6 ê← Ytst[i : i+ w]− Ŷtst[i : i+ w];
7 DV [index]← @Distance(DM, e, ê);
8 index← index+ 1;
9 end

10 θ ←MAX(DV );
11 return θ;
12 end

To compute the y-overfitting score, the changes to the dataset and the model
are made according to each of the tested assumptions; this is shown in Algorithm
1 with the call @InitializeScenario(). Similarly to the threshold computation,
a distance vector is computed between the prediction error, over the testing
dataset, using the moving window w, and the training prediction error. Each
resulting distance value is divided by the threshold θ. Finally, the y-overfitting
score is computed as the average of the computed distances over the entire testing
dataset.



8 Bolboacă et al.

3.3 Missing Values

Our proposed approach for dealing with missing values involves switching the
same model from using the output ground truth value, as extra input, to using
its previous predicted value, in real time, when the target values are missing.
More formally, we consider a masking vector m(t) ∈ {0, 1} which denotes the
missing output ground truth values at time t. Specifically, we have:

m(t) =

{
0, if y(t-1) is missing at time t
1, if y(t-1) is available at time t.

(1)

At each time-step t, the model will take as extra input: m(t)y(t− 1) + (1−
m(t))ŷ(t − 1). Here, depending on whether the previous true output value is
available, the model will switch from using the true output previous value y(t−1)
to using the previous predicted output value ŷ(t− 1).

4 Experimental Assessment

The experimental assessment is split into four scenarios. In Scenarios I-III, the
three assumptions formulated for y-overfitting are tested. Scenario IV deals with
testing the model against missing values. Additionally, threshold computation is
performed in the base reference scenario, where no modifications are made to the
datasets. The threshold is computed using the testing datasets. All experiments
were implemented in Python, utilizing Keras with the TensorFlow backend.

4.1 The Tennessee Eastman Process Dataset

Introduced by Downs and Vogel in 1992 [7], the Tennessee Eastman Process
(TEP) represents a model of an industrial chemical process aimed at facilitating
the design, exploration, and evaluation of process control technologies. The TEP
dataset has been utilized in a wide range of research studies, encompassing the
design of control strategies for plant-wide applications, multivariate control anal-
ysis, educational purposes, anomaly detection, and fault diagnosis. Additionally,
this dataset is publicly available [23].

The training subset comprises 500 simulations, each simulation containing
500 observations, resulting in a total of 250,000 observations. In each simula-
tion, the variables were sampled every 3 minutes and the simulations ran for
25 hours in the case of the training subset. The testing subsets, on the other
hand, ran for 48 hours and consisted of 500 simulations, each simulation hav-
ing 960 observations, amounting to a total of 480,000 data points. Every subset
consists of 55 columns, which encompasses 52 variables, the simulation number,
the sample number, and an additional column for supplementary information.



Evaluation Techniques for Long Short-Term Memory Models 9

4.2 Architecture, Hyperparameters and Additional Parameters

The LSTMTF model comprises a single hidden layer containing 16 hidden units,
along with an output layer consisting of 1 neuron. In this model, the inputs in-
clude A Feed, A and C Feed, Product Separator Pressure, Stripper Pressure,
Stripper Temperature, Stripper Steam Flow, Reactor Cooling Water Outlet
Temp, Reactor feed Analysis B, Reactor feed Analysis E, A feed flow, Reac-
tor Cooling Water Flow and the corresponding output is Product Analysis F.

The training process entails 300 epochs, with an initial learning rate of 0.005,
a batch size of 32, and a sequence length of 40. The models are trained using the
Adam optimizer, with a learning rate decay of 4% every 20 epochs. Furthermore,
the LSTMTF model is designed to be stateful and in a many-to-many mode. In
terms of additional parameters, the prediction window w, utilized in Algorithm
1 and 2, was set to be equal to 10,240, the same length as the selected training
set. For the Histogram Euclidean Distance metric the number of bins and bin
edges were computed using the default Sturges rule [2] for each experiment. This
results in a value for the ψ number of bins of 15.

5 Experimental Results

To minimize the possibility of obtaining biased results, each experiment was
repeated 10 times, requiring the model to be re-trained and retested in each
instance. Consequently, the results presented in this section represent the average
of the 10 individual experiments for every scenario.

5.1 Overfitting Tests

The results of the y-overfit tests are illustrated in Table 1. Recall, in Algorithm
1, the computation of the y-overfitting scores included dividing the result by
the threshold (e.g., the maximum of the distribution distances from the base
reference scenario), thus the y-overfitting score represents the factor increase
from the threshold.

In the first scenario, for each experiment, an independent exogenous input
variable was disabled. In total, 11 experiments were performed, one for each of
the exogenous inputs. As shown in the same table, the results using the three
proposed metrics exhibited numerous similarities, with values ranging from 1.4
to 3.5. This corresponds to a percentage increase range of 40% to a maximum
of 250% from the threshold.

Moving forward to the results for Scenario II, where all the exogenous inputs
were disabled, leaving as input only the previous output ground truth value. The
experiments reveal y-overfitting scores ranging from 4.56 to 10.24 between the
three distance metrics. These numbers translate to a 356% increase (measured
via the Euclidean Histogram Distance) and a 924% increase (measured using the
Wasserstein Distance).

The third assumption tested in this study entailed the adoption of a constant
value for the previous ground truth value. The y-overfitting scores exhibit a



10 Bolboacă et al.

range spanning from a minimum of 7.15 (measured via the Histogram Euclidean
Distance) to a maximum of 13.21 (measured using the Wasserstein Distance).
These numerical values signify a multiplication factor that varies between 6 and
12 above the designated threshold and corresponds to a percentage range of
600% to 1200%.

Table 1. Experimental results for three tested y-overfitting scenarios.

Scenario I

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

ED 2.4 2.3 2.35 2.01 1.44 1.83 2.79 2.79 1.5 2.06 1.73

WD 2.99 2.89 2.98 2.59 1.8 2.2 3.39 3.51 1.84 2.59 2.11

HD 2.16 2.11 2.27 1.97 1.44 1.6 2.42 2.5 1.42 1.99 1.64

Scenario II Scenario III

ED 10.11 11.11

WD 10.24 13.21

HD 4.56 7.15

5.2 Missing Values

For every simulation (e.g., 500 observations), a maximum of 5 consecutive val-
ues were removed. The placement of the missing values was selected at random
for each simulation. The results, measured using the Energy Distance, reveal a
factor of 0.72 from the maximum value, denoting a decrease of 28%, and a factor
of 1.0014 from the average value, denoting a 0.14% increase from the average.
Similar results were obtained when utilizing the Wasserstein Distance with a
factor of 0.74 from the maximum value and a factor of 1.0012 from the average
value, representing an increase of 0.12%. Finally, the Histogram Euclidean Dis-
tance yields a factor of 0.47 from the maximum value, corresponding to a 53%
decrease from the maximum value. With respect to the average value, a factor
of 1.0011 was obtained, indicating a 0.11% increase.

6 Discussions and Conclusions

In this study, we have addressed two critical challenges in the field of system
modeling, namely that models that use the previous output ground truth value
as an additional input might excessively rely on this additional input; and real-
time handling of missing data. Our research proposed a novel method to test the
former issue, named y-overfitting, specifically focusing on LSTMs trained with
the TF algorithm. Additionally, our study introduced a method to deal with
missing data in real time. Using this method, the model can effectively handle
missing values while making predictions, enhancing the robustness and reliabil-
ity of the LSTM-based system. Although the experimental evaluation results



Evaluation Techniques for Long Short-Term Memory Models 11

highlighted that all the selected distance metrics clearly demonstrated that the
model did not y-overfit in any of the tested scenarios, they also revealed the
sensitivity of various distance metrics, with the Histogram Euclidean Distance
as the least sensitive. This could easily be explained by the fact that converting
the distributions to histograms could result in information loss, depending on
the construction of the histogram. In this direction, the authors in [2] empirically
tested the sensitivity of these models using various bin selection methodologies.

When testing the first y-overfitting assumption, namely that disabling a sin-
gle exogenous input would result in a similar distribution of the prediction er-
ror, it was observed that disabling certain inputs yielded different results. These
results ranged from an increase of 44% over the baseline to 140%. Further in-
vestigation has revealed that the model exhibits varying degrees of sensitivity to
certain inputs. However, the fact that in all experiments there was a significant
increase over the baseline threshold also indicates that all the inputs contributed
to the resulting prediction. This indicates that the model successfully discovered
the underlying relationships between all inputs and the output.

In terms of missing values, the experimental assessment revealed a tiny in-
crease in the prediction error (with respect only to the average value), with a
maximum increase of 0.14% and an average increase value of 0.12%, further prov-
ing that such a solution would be robust to a realistic small number of missing
values related to communication faults or erroneous sensor readings.

In future work, the experimental evaluation presented in this article will be
extended with other datasets and comparisons with established techniques. The
valuable knowledge obtained from this paper will be utilized to further develop
feature analysis, anomaly detection, and system monitoring techniques.

References

1. Alibabaei, K., Gaspar, P.D., Lima, T.M.: Modeling evapotranspiration using
encoder-decoder model. In: International Conference on Decision Aid Sciences and
Application. pp. 132–136. IEEE (2020)

2. Bolboacă, R.: Adaptive ensemble methods for tampering detection in automotive
aftertreatment systems. IEEE Access 10, 105497–105517 (2022)

3. Bolboacă, R., Haller, P.: Performance analysis of long short-term memory predic-
tive neural networks on time series data. Mathematics 11(6) (2023)

4. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Scientific reports 8(1), 6085 (2018)

5. Chen, K., Zhou, Y., Dai, F.: A lstm-based method for stock returns prediction: A
case study of china stock market. In: 2015 IEEE International Conference on Big
Data (Big Data). pp. 2823–2824 (2015)

6. Cui, Z., Ke, R., Pu, Z., Wang, Y.: Stacked bidirectional and unidirectional lstm
recurrent neural network for forecasting network-wide traffic state with missing val-
ues. Transportation Research Part C: Emerging Technologies 118, 102674 (2020)

7. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Com-
puters & chemical engineering 17(3), 245–255 (1993)

8. Elmaz, F., Özgün Yücel: Data-driven identification and model predictive control of
biomass gasification process for maximum energy production. Energy 195, 117037
(2020)



12 Bolboacă et al.

9. Enders, C.K.: Applied missing data analysis. Guilford Publications (2022)
10. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
11. Han, J., Kang, S.: Dynamic imputation for improved training of neural network

with missing values. Expert Systems with Applications 194, 116508 (2022)
12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation

9(8), 1735–1780 (1997)
13. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts

(2018)
14. Khayati, M., Lerner, A., Tymchenko, Z., Cudré-Mauroux, P.: Mind the gap: an

experimental evaluation of imputation of missing values techniques in time series.
In: Proceedings of the VLDB Endowment. vol. 13, pp. 768–782 (2020)

15. Lem, N.: An adaptive model of pulse in jazz percussion: Rhythmic generation in
quasi-periodic musical contexts using sequence-to-sequence learning

16. Lin, H., Zhang, S., Li, Q., Li, Y., Li, J., Yang, Y.: A new method for heart rate
prediction based on lstm-bilstm-att. Measurement 207, 112384 (2023)

17. Lin, W.C., Tsai, C.F., Zhong, J.R.: Deep learning for missing value imputation of
continuous data and the effect of data discretization. Knowledge-Based Systems
239, 108079 (2022)

18. Narendra, K.S., Parthasarathy, K.: Neural networks and dynamical systems. In-
ternational Journal of Approximate Reasoning 6(2), 109–131 (1992)

19. Nguyen, T., Lu, T., Sun, J., Le, Q., We, K., Schut-Aine, J.: Transient simulation for
high-speed channels with recurrent neural network. In: 2018 IEEE 27th Conference
on Electrical Performance of Electronic Packaging and Systems (EPEPS). pp. 303–
305. IEEE (2018)

20. Nicolai, G., Silfverberg, M.: Noise isn’t always negative: Countering exposure bias
in sequence-to-sequence inflection models. In: Proceedings of the 28th International
Conference on Computational Linguistics. pp. 2837–2846 (2020)

21. Pearson, R.K.: Nonlinear input/output modelling. Journal of Process Control 5(4),
197–211 (1995)

22. Ramdas, A., García Trillos, N., Cuturi, M.: On wasserstein two-sample testing and
related families of nonparametric tests. Entropy 19(2), 47 (2017)

23. Rieth, C., Amsel, B., Tran, R., Cook, M.: Additional tennessee eastman process
simulation data for anomaly detection evaluation. Harvard Dataverse 1 (2017)

24. Rizzo, M.L., Székely, G.J.: Energy distance. wiley interdisciplinary reviews: Com-
putational statistics 8(1), 27–38 (2016)

25. Schmidt, F.: Generalization in generation: A closer look at exposure bias. arXiv
preprint arXiv:1910.00292 (2019)

26. Tang, Y., Wang, Y., Liu, C., Yuan, X., Wang, K., Yang, C.: Semi-supervised lstm
with historical feature fusion attention for temporal sequence dynamic modeling in
industrial processes. Engineering Applications of Artificial Intelligence 117 (2023)

27. Wang, Y.S., Lee, H.Y.: Learning to encode text as human-readable summaries
using generative adversarial networks. arXiv preprint arXiv:1810.02851 (2018)

28. Wei, W., Li, X., Zhang, B., Li, L., Damaševičius, R., Scherer, R.: Lstm-sn: complex
text classifying with lstm fusion social network. The Journal of Supercomputing
pp. 1–26 (2023)

29. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully re-
current neural networks. Neural computation 1(2), 270–280 (1989)

30. Yeung, D.S., Cloete, I., Shi, D., wY Ng, W.: Sensitivity analysis for neural networks.
Springer (2010)

31. Zhou, B., Yang, G., Shi, Z., Ma, S.: Interpretable temporal attention network for
covid-19 forecasting. Applied Soft Computing 120, 108691 (2022)


