
A Statefull Firewall and Intrusion Detection System Enforced
with Secure Logging for Controller Area Network

Teri Lenard
Roland Bolboacă
teri.lenard@umfst.ro

roland.bolboaca@umfst.ro
University of Medicine, Pharmacy, Science and Technology

of Târgu Mureş, Romania
Târgu Mureş, Mureş, Romania

ABSTRACT
The Controller Area Network standard represents one of the most
commonly used communication protocol present in today’s vehicles.
While it’s main properties facilitate the communication between
different control units, several protocol design considerations re-
present security problems, that in the end makes it trivial for an
attacker to gain access and control the system. The current work
proposes a Statefull Firewall, together with a signature-based Intru-
sion Detection System as a response. Beside this, a Secure Logging
unit is brought up in addition to support our methods, enforcing
them with integrity verifiable logs.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Fire-
walls.

KEYWORDS
intrusion detection system, firewall, controller area network

ACM Reference Format:
Teri Lenard and Roland Bolboacă. 2018. A Statefull Firewall and Intru-
sion Detection System Enforced with Secure Logging for Controller Area
Network. In EICC ’21: European Interdisciplinary Cybersecurity Conference,
November 10–11, 2021, Targu Mures, RO. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Today’s modern vehicle incorporates a mix of interconnected net-
work subsystems, for the purpose of offering an environment which
encapsulates a wide variety of features. Although the complexity
and heterogeneity of automotive systems grows at a fast pace, in
the same manner we find an emerging number of sophisticated
threats.

By directly targeting the underlying network communication,
most threats intend to control critical system processes by means

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EICC ’21, November 10–11, 2021, Targu Mures, RO
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

of replaying legitimate network traffic. The effectiveness of those
threats relies on several designs considerations of the Controller
Area Network (CAN) [13] protocol. Besides its wide utilization in au-
tomotive systems, CAN allows frame exchanges between different
Electronic/Sensor Control Units, and between CAN sub-networks.
In general, an automotive network incorporates several CAN net-
works, interconnected via a gateway, that functions alongside other
communication protocols (e.g., LIN, MOST, SENT).

In order to attack a CAN system, malicious actors would ini-
tiate the attack by gaining physical access to: a in-vehicle CAN
network, a On-Board Diagnostic Port, or by compromising an ex-
ternal access points (e.g., Wi-Fi hotspot). Once access is obtained,
the attacker may then proceed to reproduce legitimate sequences of
CAN traffic by replaying valid frames. Since CAN systems follow a
broadcast communication pattern, the actual point from where the
attacker conducts its activities may be irrelevant. The communica-
tion pattern allows such an attacker to reach any communication
unit within the system, situated on the current compromised CAN
bus, or on another bus positioned on the other side of the gateway.

The ability for an attacker to communicate with a control unit
present in the system is facilitated by the fact that a number of
data frames originating from one CAN network, can be further
broadcasted by the gateway to other CAN networks. Typically, the
CAN gateway is positioned as the delimiting entity of several CAN
networks. However, traffic filtering techniques normally found in
traditional Information and Communication Technology (ICT) are
not present. Subsequently, intrusions within vehicles are not trivial
to detect.

To tackle these issues, the current paper proposes a Statefull
Firewall (SFW), together with a signature-based Intrusion Detection
System (IDS) tailored for the CAN. By leveraging a set of whitelisted
and blacklisted rules, the SFW is capable of filtering single, and
sequences of related CAN frames in a statefull manner. Likewise, the
IDS extends the properties of the SFWwith the additional capability
of performing deep packet inspection at the CAN frame byte level.
By doing so, the IDS can identify known patterns associated with
a particular intrusion. To enforce verifiable auditing of generated
alerts, the developed approach is enhanced with Secure Logging
(S-LOG) capabilities. S-LOG utilizes the Trusted Platform Module
(TPM) [26] standard to generate verifiable log messages, resistant
to external manipulation.

The rest of the paper is organized as follows. Related studies
together with several background concepts are presented in Section
2. An in-depth description of the developed approach is given in

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

EICC ’21, November 10–11, 2021, Targu Mures, RO Lenard and Bolboacâ

Section 3. Afterwards, Section 4 focuses on the measurements and
experiments, and finally, the paper concludes in Section 5.

2 BACKGROUND AND RELATEDWORK
2.1 Vehicle Internal Architecture
The internal architecture of an automotive system encapsulates
a series of network protocols, together with a significant number
of control units and digital/analog sensors. The set of protocols
include: the Controller Area Network (CAN) for Electronic/Sen-
sor Control Units, Local Interconnected Network (LIN) or Single
Edge Nibble Transmission (SENT) for digital sensors, and Media
Oriented System Transport (MOST) for media devices. Typically,
these networks are coupled to a more powerful gateway unit, which
handles routing tasks and protocol translations. At the same time,
the gateway itself may communicate with a Communication Con-
trol Unit (CCU) that manages the communication with exterior
networks.

Being one of the most widespread protocols in automotive sys-
tem, the CAN protocol was extended by Robert Bosch Gmbh into
the CANwith Flexible Data-rate (CAN-FD) protocol [21], to remove
the limitation of the CAN in terms of available data transfer per
frame, bandwidth and transfer rates. Apart for the improvements
brought up, CAN-FD maintains the general properties of the CAN.

The CAN protocol follows a broadcast communication pattern
over a common bus, where control units and digital sensors use
a bit-wise arbitration, based on the priority stored in the frame
identifier [13] to access the communication bus. A data frame is
identified by its unique identifier field; it contains a 64 bit data field,
and, among other fields, a Cyclic Redundancy Check field for error
correction.

From a security standpoint, the CAN standard does not provide
guidelines on how data transfer should be secured. To support this
issue, the standardisation unit AUTOSAR developed the Secure
On-Board Communication [3] requirements, describing how data
should be authenticated in an automotive network. In addition to
this, CAN lacks traditional security components (e.g., firewall, intru-
sion detection). As demonstrated by the literature review, several
solutions have been proposed to tackle the present problems, but
their integration has shown little progress.

2.2 Trusted Platform Module
The Trusted Platform Module (TPM) [26] standard developed by
the Trusted Computing Group (TCG) [9], describes the capabilities
that a tamper-resistant, cryptoprocessor should meet in order to
execute cryptographic operation in a isolated environment. Besides
offering a set of general requirements for Information Communi-
cation Systems, TCG recently released a report in [8], describing
how the security of a automotive vehicle can he harden with the
help of the TPM standard.

Generally, in addition to traditional cryptographic procedures
(e.g., encryption, decryption, digital signature), the TPM offers
means based on which local applications can be attested during
system run-time, together with their assets, using a set of Platform
Configurable Registers (PCR).

PCRs represent a key feature offered by the TPM, that provide a
hash-based method to aggregate measurements about the state of a

Gateway

Communica�on
Control Unit

Engine Control
Unit

Nox Sensor

Lambda
Sensor

Power Train Sensor
Control

Delta Pressure
Sensor

SENT Protocol
CAN

Network

LIN Network

Dashboard

Door
Control

Unit

Climate
Control

Unit

Rear View
 Mirror Control Unit

GPS

MOST Network

Speakers

Digital
Radio

GSM

Transmission
Control Unit

Rear View
 Mirror Control Unit

Figure 1: General architecture of the modern car.

software component [2]. A PCR supports a single operation, named
extend, consisting in a hash function applied on the current PCR
value, concatenated with the new data that requires measurement.
An important aspect regarding PCRs, is that their state is always
initialized during system start-up, or TPM power on, with a default
value, denoted in most cases by a set of zeroes or ones. Later during
run-time, by performing a series of extend operations on a given
PCR, an application can attest the state of another application or
its configuration file, by comparing the current PCR with a value
stored in the past.

From the point of view of data storage, the TPM offers a limited
amount of persistent storage inside its Non-Volatile memory. Due
to its reduced size, additional security features are offered by the
standard to store data outside the TPM. For cryptographic key
storage, TPMs possess a set of key hierarchies, where, starting
from a root key (or secret seed) available inside the TPM, keys
can be deterministically generated during run-time [1]. One such
hierarchy is the storage hierarchy. This hierarchy defines a Storage
Root Key (SRK), representing a randomly generated key by the
TPM’s Original Equipment Manufacturer, accessible only to the
TPM itself, that can’t be swapped or recreated. By leveraging the
SRK, a distinct type of secure on-disk storage for cryptographic
keys, named sealing can be accomplished. Once a pair of keys is
derived from the SRK, the private part is encrypted with the SRK
(sealed), and the public part is kept unencrypted. By doing so, the
TPM protects the secret part of the key pair, making it available
only to itself.

Later in this paper, the features offered by the TPM will be
adopted to implement the secure logging approach.

2.3 Related Studies
In the current scientific literature, we found a significant number
of works, aimed at the automotive systems, with the purpose of
hardening the system security with firewall and intrusion detection
systems. Wolf, et al. [27] provided a study where a series of existent

A Statefull Firewall and Intrusion Detection System Enforced with Secure Logging for Controller Area Network EICC ’21, November 10–11, 2021, Targu Mures, RO

threats and vulnerabilities were identified for automotive systems.
Aside from this, they provided recommendations on how firewalls
should be integrated at gateway level for protocols such as the CAN,
LIN or MOST, to restrict diagnostic traffic during driving.

Luo and Hou [18] proposed an in-vehicle gateway firewall, ca-
pable of operating on CAN-FD networks and on infotainment
Ethernet-based networks. Their proposed solution for the CAN-FD
leverages a time window technique to monitor the changes in the
information entropy to detect injection, flood, man-in-middle and
replay attacks. Conversely, the Ethernet version, employs a state
packet filter using rule tables based on IP address, port, protocol
and other IP related parameter information. Similarly, but focused
on communication originating from outside the vehicle, Jawahar
et al. [14] proposed an application-controlled dynamic firewall for
managing bi-directional interfaces between ports and applications
using IP tables.

Besides firewalls, we find one of the earliest IDS dating back to
2009 [11]. In recent years, the number of proposed in-vehicular IDS
increased significantly. Similarly to the IDS found in Information
Communication Technologies, the detection methods consider ei-
ther anomaly-based or signature-based (rule-based) approaches. On
a more granular level, based on the algorithms used, the anomaly-
based IDS can be frequency-based, machine learning-based, and
statistical-based.

Groza andMurvay proposed several frequency-based approaches,
such as [19] where they were able to detect illegal frame transmis-
sions, as well as a estimation for position of the attack source, by
monitoring the arrival time of the CAN frames. Furthermore, in
[10], the same authors proposed an in-vehicle IDS capable of detect-
ing replay and modification attacks by leveraging Bloom filters [4]
in order to verify the frame periodicity, based on the CAN identifier
and payload fields.

For more advanced, machine learning-based approaches, we find
the work of Taylor, et al. [25], where one-class support vector ma-
chines were used to detect anomalies in the arrival frequencies of
CAN frames. Seo, et al. [22] described a Generative Adversarial
Net-based IDS using a deep learning model. Similarly, Kukkala et al.
[16] proposed a gated recurrent unit-based recurrent autoencoder
anomaly detector for the CAN. On the subject of in-vehicle IDS
for the Ethernet network we find the work of Jeong, et al. [15],
where an intrusion detection model based on feature generation
and convolutional neural networks was developed. While neural
network-based approaches proved to be efficient in terms of de-
tection accuracy, their integration into real vehicles might prove
challenging due to the limited resources and computational power
of the in-vehicle systems.

Compared to prior techniques, we believe the advantages brought
up by our approach are three-fold: (i) it builds on a rule processing
engine that supports the development of a firewall and IDS in a
single component; (ii) it provides a lightweight engine with low
computational requirements, that can be integrated with ease; and
(iii) we enforced our methods with logging unit, which uses the
TPM standard to provide verifiable secure logs for generated events.

3 APPROACH
3.1 Overview
The developed approach builds on a Rule Processing Engine (RPE)
capable of functioning, first as a Statefull Firewall (SFW), and sec-
ond, as an Intrusion Detection System (IDS). Its behaviour is con-
figurable and is based on a rule file associated with the RPE. While
functioning as a SFW, the RPE processes CAN frames based on the
frame identifier field. On the other hand, while operating as an IDS,
a byte-level deep packet inspection is performed on the frame data
field.

A distinct aspect for the SFW is that is meant to be positioned at
the CAN gateway level to filter incoming frames, therefore limiting
the amount of traffic further broadcasted by the gateway. To accom-
plish this with minimum additional latency, the patterns contained
by the rule file should not present a complex structure.

On the other hand, the IDS allows a more in-depth analysis of
the CAN traffic with more complicated rules. This inspection can
introduce a significant delay, therefore the IDS serves as a passive
entity, listening on the communication bus, and then generating
events if pattern matches are detected.

The rule file associated with the SFW/IDS describes predefined
sets of blacklisted or whitelisted rules. Each rule represents a pattern
searched within an incoming CAN frame. Accordingly, a rule is
bound to a action, which triggers an event if a pattern is found.
To statefully process frames, rules are further chained together in
sequences of rules, allowing the SFW/IDS to make decisions on a
current frame, based on the past received traffic.

When the SFW/IDS detects a particular pattern, an action is
generated. In the present context, an action defines the operation
that must take place as a consequence to a specific event. An action
can have one of the four values: PERMIT, DROP, PERMIT-LOG and
DROP-LOG. The first action specifies that an incoming frame should
be allowed to pass. At the opposite end, the DROP action indicates
that a frame should not be further forwarded. Similar to these, the
PERMIT-LOG and DROP-LOG actions additionally require that the
event generated should be logged by the Secure Logging unit to
enforce traceable and verifiable auditing of logs. An illustration
of this procedure and of the high-level architecture is provided in
Figure 2.

3.2 Rule Definition Language
The set of rules contained in the rule file are described using a
Extensible Markup Language (XML) [5] based language. A pattern
is defined as an action rule, which ultimately is applied on every
data frame. An action rule can be linked together with a sequence
of action rules creating a state-chain. This describes actions that
must be taken on a sequence of frames, thus providing contextual
detection capabilities. Subsequently, each action rule provides the
ability to generate a hierarchical expression, allowing definitions for
deep packet inspection rules. This step leverages boolean operators,
such as AND and OR, used to link together different expressions.

Next, we provide a formal definition of the developed language.
Let Value(byteIdx, v) be a predicate that returns True if within
the CAN frame’s data field, the byte at index byteIdx has value
v, and False, otherwise. Similarly, let ValueRange(byteIdx, v1,
v2) be a predicate that returns True if the byte at index byteIdx

EICC ’21, November 10–11, 2021, Targu Mures, RO Lenard and Bolboacâ

TPM

Stateful
Firewall

Intrusion
Detection

Secure
logging

Rule file Signature file

Log event Log event

Figure 2: Architecture of the proposed Statefull Firewall and
Intrusion Detection System.

is in the range [v1,v2], and False, otherwise. Based on these
definitions, an expression that is associated later to an action rule
is defined as:

actionExpr::= .

|| Value(byteIdx, v)

|| ValueRange(byteIdx, v1, v2)

|| (actionExpr) AND (actionExpr)

|| (actionExpr) OR (actionExpr), (1)

where ‘.’ denotes an empty expression. Building on the present
definition, an action rule is defined as follows:

Action-rule ::= <Name, CID, actionExpr,

Action, Message> (2)

According to the definition above, an action rule is characterized
by the following fields: a string denoting the rule’s name; the CAN
identifier (CID); an action expression used in the case of deep packet
inspection; and, the message used if the action rule requires logging.

Lastly, to enable statefull traffic inspection, a state chain is defined
as an ordered sequence of action rules:

State-chain ::= <Action-rule1, Action-rule2,

Action-rule3, ...> (3)

The similarity between SFW and IDS rules resides in the fact
that both can support action rules and state chains. The difference
relies in the definition of the action rules. For SFW the action rule
structure does not contain the actionExpr field, which is particular
to the IDS.

3.3 Rule Processing Engine
The Rule Processing Engine (RPE) represents the core component
of the SFW/IDS. Its objective is to apply the predefined set of rules,
as described in the previous section, to filter the incoming CAN
frames, and finally, to generate actions. Depending on the set of
rules, the RPE can act as a SFW, or as IDS by performing deeper
inspection. Figure 3 illustrates the workflow for both cases.

Each incoming frame is processed in two distinct phases: (i) the
action rule phase (Phase 1); and (ii) the state chains phase (Phase 2).
In Phase 1, for each incoming frame, every action rule is verified
independently. If a match is found, Phase 1 finishes, and the RPE
continues to Phase 2. In this phase, state chains are executed follo-
wing search patterns identifying series of frames. In a particular
chain, every action rule is processed according to its definition,
meaning that after the execution of each action rule, an action al-
ways occurs. At the end of the chain, similarly, an action associated
with the chain is returned and processed properly. On the contrary,
if a match is not found for a frame, implicitly, the PERMIT action is
returned.

3.4 Secure Logging
The Secure Logging (S-LOG) unit handles incoming logging re-
quests generated by the RPE in the case of a PERMIT-LOG or DROP-LOG
actions. When such an event occurs, a message M is generated by
RPE under the following structure (TIME, LEVEL, TEXT), where
field TIME denotes the system time, LEVEL the importance of the log,
and TEXT, a string containing additional information about the log.
S-LOG takes M as input, and generates a cryptographic signature
as output. S-LOG takes advantage of the TPMs PCRs in order to
aggregate signed messages, and to attest the log files integrity.

To sign messages, S-LOG leverages a pair of asymmetric keys,
denoted in the followings as (𝐾𝑝𝑟𝑣, 𝐾𝑝𝑢𝑏). It is assumed that the
keyswere generated by a trusted authority (e.g., Original Equipment
Manufacturer), in relation with the TPM connected to the Control
Unit onwhich S-LOG runs. Using the TPM’s 𝑆𝑅𝐾 , the pair is derived
as such:

DERIV(SRK) = ({𝐾𝑝𝑟𝑣}, 𝐾𝑝𝑢𝑏)), (4)
where DERIV represents the key derivation function supported by
the TPM, and {} denotes the sealing operation applied on 𝐾𝑝𝑟𝑣 , in
which 𝐾𝑝𝑟𝑣 is encrypted with SRK for storage outside the TPM. Last
but not least, S-LOG requires the use of a single PCR, denoted as
P, to generate a secondary integrity log. The terms signature log
will denote the log file containing signed messages returned by the
SFW/IDS, while the term integrity log refers to an additional log file,
containing a verifiable sequence of hash digests associated with the
signature log files.

The logging procedure is initiated once a message M is received
by the logging unit. S-LOG communicates with the TPM to generate
a digital signature using the sealed pair of keys ({𝐾𝑝𝑟𝑣}, 𝐾𝑝𝑢𝑏) as:

𝑆𝐼𝐺𝑁 {𝐾𝑝𝑟𝑣 },𝐾𝑝𝑢𝑏
(M | P) = 𝑦𝑀, (5)

where 𝑦𝑀 is the digital signature, and P represents the current
value stored in the respective PCR. This process is repeated for
every M until the signature log file reaches a predetermined size and
a log rotate it’s executed. Before rotating to a new file, the current
value of P is read, and stored together with it’s signature as the
tuple:

(P | 𝑆𝐼𝐺𝑁 {𝐾𝑝𝑟𝑣 },𝐾𝑝𝑢𝑏
(P)) (6)

into the integrity log. By doing so, a trace for every signature file is
maintained, and anymodification on a signature filewill be reflected
during auditing.

A Statefull Firewall and Intrusion Detection System Enforced with Secure Logging for Controller Area Network EICC ’21, November 10–11, 2021, Targu Mures, RO

CAN Frame
Action rule 1

...

Action rule 2

Action rule 3

PERMIT

DROP

PERMIT&LOG

DROP&LOG

Action rules

State chain 1 PERMIT

DROP

PERMIT&LOG

DROP&LOG

Action rule 1.1 Action rule 1.2 ...

State chain 2

Action rule 2.1 Action rule 2.2 ...

... State chains

Action

CAN Frame
+ Action

Figure 3: Rule engine workflow.

4 EXPERIMENTS
An important aspect regarding the feasibility of the proposed SFW/IDS
relies in their performance, measured in the amount of time required
to process a given frame, relative to different sized rule files. This
yields the actual delay that the SFW causes to each CAN frame, and,
similarly, the amount of time the IDS needs to detect a particular
pattern. For the purposes of demonstrating the developed concepts,
a physical test-bed replicating a CAN environment was developed.

4.1 Implementation details
The developed test-bed comprises two Raspberry Pi 3 model B+
(RPi) boards, each connected to a common CAN bus, exchang-
ing frames via MCP2515 CAN controllers and a TJA1050 CAN
transceiver. To simulate the CAN traffic and bus load of a real CAN
environment, a trace of real CAN frames was used, originating
from a KIA Soul vehicle. The CAN trace was made available by he
Hacking and Countermeasures Research Lab (HCRL) [12, 17] and
the University of Seoul, South Korea. The dataset comprises over
two million can frames, 45 distinct frames spanning over a period
of 17 minutes. From the original dataset, the first 100000 frames
from 25 frames were selected.

Each RPi runs a Automotive Grade Linux (AGL) [6] distribution
system built with Yocto [7]. The SFW/IDS is implemented in C++,
the S-LOG module in python with the TPM2-Tools [23] provided
by the open-source developers of the Linux TPM2 & TSS2 Software
[24]. Furthermore, a data frame replay and routing module were
developed with the help of the SocketCAN Linux package [20].
Last but not least, the rule files were defined, firstly for the SFW,
and secondly for the IDS. Bellow, an example of a simplified rule
is illustrated to showcase the developed approach. A action rule
follows the below definition:

< r u l e c i d = " 1 " i d = " 1− permi t " a c t i o n = " PERMIT " >
< / r u l e >

In the listing above, an action rule was given, including its CAN
identifier (cid), a unique identifier (id), and an associated action.
A series of action rules are then linked into a state chain as in the
following example:

< s t a t e − cha i n s >
< cha in i d = " s t a t e − chain −1 " >

< r u l e i d = " 1− permi t " a c t i o n = " PERMIT " / >
< r u l e i d = " 2− permi t " a c t i o n = " PERMIT " / >
< r u l e i d = " 3−drop " a c t i o n = "DROP" / >

< / cha in >
< / s t a t e − cha i n s >

in the above example a series of action rules are chained together,
each having its own associated action. If deep packet inspection is
required, the following definition of a action rule can also be added
to the rule definition file:

< r u l e c i d = " 1 " i d = " 1− permi t " a c t i o n = " PERMIT " >
<pay load >

< e xp r e s s i o n >
< op e r a t o r type= "AND" >

<by te index= " 0 " va l u e = " 50 " / >
<by te index= " 1 " va lue − range= " 0 . . 1 2 7 " / >

< / op e r a t o r >
< / e x p r e s s i o n >

< / pay load >
< / r u l e >

The expression shown above will allow a frame if and only if
the byte at index 0 has the value 50, and the byte a index 1 has a
value in the range of [0, 127].

4.2 Experimental Results
To showcase the approach, a scenario was envisioned where the
performance, as well as the delays introduced by both the SFW
and the IDS components were measured, based on the length of
the defined rule file (i.e., the number of frames filtered by both
components).

For both the SFW and IDS components 5 sets of rule files were
created. The number of rules in each file ranged from 5 to 25 in
increasing steps of 5. Both the SFW and the IDS components were
installed and set up on a primary Raspberry PI board. For each
experiment (i.e., for each component and for each rule file) from
a secondary Raspberry PI, connected to the same network, a total
number of 1000 CAN frames were sent using a baud rate of 250
kbps over a period of 180 seconds. Furthermore, for each frame that
was filtered by the SFW and IDS, the execution time was measured.

The results of the measurements are showcased in Figure 4 and
Table 1. Figure 4 presents the average processing time, per frame,
for both the SFW and IDS components for each rule file and for the
different types of defined actions. Moreover, a detailed description
of the minimum, maximum and average processing times is shown
in Table 1

5 CONCLUSIONS
The current paper proposed two approaches targeting known threats
present in Controller Area Network systems. First, a new Statefull
Firewall and a Intrusion Detection Systems were introduced, to-
gether with their internal functioning engine, and its rule language.

EICC ’21, November 10–11, 2021, Targu Mures, RO Lenard and Bolboacâ

Statefull Firewall Intrusion Detection System
Defined Actions PERMIT/DROP (PERMIT/DROP) & LOG PERMIT/DROP (PERMIT/DROP) & LOG

Nr of rules 5 15 25 5 15 25 5 15 25 5 15 25
Min [ms] 0.035 0.033 0.036 0.038 0.035 0.037 0.035 0.034 0.036 0.037 0.039 0.037
Max [ms] 0.226 0.222 0.226 0.217 0.182 0.185 0.140 0.155 0.205 0.192 0.186 0.152
Avg [ms] 0.043 0.046 0.045 0.051 0.051 0.047 0.045 0.046 0.044 0.052 0.053 0.049

Table 1: Minimum, maximum and average measured frame processing times for the SFW and IDS components

5 10 15 20 25

Number of defined rules for the state chain

0

0.05

0.1

0.15

A
ve

ra
ge

 ti
m

e
[m

s]

SFW PERMIT/DROP
IDS PERMIT/DROP
SFW (PERMIT/DROP) & LOG
IDS (PERMIT/DROP) & LOG

Figure 4: Comparison between the average processing times
for the SFW and IDS components

Additionally, a Secure Logging unit was introduced to handle the
security of the logs produced. Last but not least, the performance of
the Statefull Firewall and Intrusion Detection System was measured
on a real reference test-bed.

6 ACKNOWLEDGMENTS
This work was funded by the European Union’s Horizon 2020 Re-
search and Innovation Programme throughDIAS project (https://dias-
project.com/) under Grant Agreement No. 814951. This document
reflects only the author’s view and the Agency is not responsible
for any use that may be made of the information it contains.

REFERENCES
[1] Will Arthur, David Challener, and Kenneth Goldman. 2015. Hierarchies. Apress,

Berkeley, CA, 105–118. https://doi.org/10.1007/978-1-4302-6584-9_9
[2] Will Arthur, David Challener, and KennethGoldman. 2015. PlatformConfiguration

Registers. Apress, Berkeley, CA, 151–161. https://doi.org/10.1007/978-1-4302-
6584-9_12

[3] AUTOSAR. 2017. Specification of Secure Onboard Communication AUTOSAR
CP Release 4.3.1. AUTOSAR (2017).

[4] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.
362692

[5] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommen-
dation. Available at http://www.w3.org/TR/REC-xml/.

[6] Linux Foundation. 2016. Automotive Grade Linux. https://www.automotivelinux.
org/ Last access: June 10th, 2021.

[7] Linux Foundation. 2020. Yocto Project. https://www.yoctoproject.org/ Last
access: June 10th, 2021.

[8] Trusted Computing Group. 2020. TCG TPM 2.0 Automotive Thin Profile For TPM
Family 2.0; Level 0. https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-
library-profile-for-automotive-thin/ Last access: June 10th, 2021.

[9] Trusted Computing Group. 2020. Trusted Computing Group. https://
trustedcomputinggroup.org/ Last access: June 10th, 2021.

[10] Bogdan Groza and Pal-Stefan Murvay. 2019. Efficient Intrusion Detection With
Bloom Filtering in Controller Area Networks. IEEE Transactions on Information
Forensics and Security 14, 4 (2019), 1037–1051. https://doi.org/10.1109/TIFS.2018.
2869351

[11] Tobias Hoppe, S. Kiltz, and J. Dittmann. 2009. Applying intrusion detection to
automotive IT-early insights and remaining challenges. Journal of Information
Assurance and Security (JIAS) 4 (01 2009), 226–235.

[12] Seong Hoon Jeong Hyunsung Lee and Huy Kang Kim. 2018. CAN Dataset
for intrusion detection (OTIDS). http://ocslab.hksecurity.net/Dataset/CAN-
intrusion-dataset Last access: June 10th, 2021.

[13] ISO. 2003. ISO 11898-1:2003 - Road vehicles - Controller area network (CAN)
- Part 1: Data link layer and physical signalling. International Organization for
Standardization (2003).

[14] Anu Jawahar, Anu Gupta, Asadullah Ansari, Rabindra Paikaray, Sabarinathan
Ravi, and Muthukumar Alagesan. 2021. Application Controlled Secure Dynamic
Firewall for Automotive Digital Cockpit. In SAE WCX Digital Summit. SAE
International. https://doi.org/10.4271/2021-01-0140

[15] Seonghoon Jeong, Boosun Jeon, Boheung Chung, and Huy Kang Kim. 2021. Con-
volutional neural network-based intrusion detection system for AVTP streams
in automotive Ethernet-based networks. Vehicular Communications 29 (2021),
100338. https://doi.org/10.1016/j.vehcom.2021.100338

[16] Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha. 2020. IN-
DRA: Intrusion Detection Using Recurrent Autoencoders in Automotive Embed-
ded Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39, 11 (2020), 3698–3710. https://doi.org/10.1109/TCAD.2020.3012749

[17] H. Lee, S. H. Jeong, and H. K. Kim. 2017. OTIDS: A Novel Intrusion Detection
System for In-vehicle Network by Using Remote Frame. In 2017 15th Annual
Conference on Privacy, Security and Trust (PST), Vol. 00. 57–5709. https://doi.org/
10.1109/PST.2017.00017

[18] Feng Luo and Shuo Hou. 2019. Security Mechanisms Design of Automotive
Gateway Firewall. In WCX SAE World Congress Experience. SAE International.
https://doi.org/10.4271/2019-01-0481

[19] Pal-Stefan Murvay and B. Groza. 2020. TIDAL-CAN: Differential Timing Based
Intrusion Detection and Localization for Controller Area Network. IEEE Access 8
(2020), 68895–68912.

[20] O. Hartkopp, et al. 2020. SocketCAN: Controller Area Network Protocol Family.
https://github.com/linux-can/can-utils Last access: June 10th, 2021.

[21] Robert Bosch Gmbh. 2012. CAN with flexible data-rate. Vector CANtech, Inc., MI,
USA, Specification Version 1.0 (2012).

[22] Eunbi Seo, HyunMin Song, and Huy Kang Kim. 2018. GIDS: GAN based Intrusion
Detection System for In-Vehicle Network. In 2018 16th Annual Conference on
Privacy, Security and Trust (PST). 1–6. https://doi.org/10.1109/PST.2018.8514157

[23] Linux TPM2 TSS2 Software. 2020. TPM (Trusted Platform Module) 2.0 tools.
https://github.com/tpm2-software/tpm2-tools Last access: June 10th, 2021.

[24] TPM2 software community. 2020. Linux TPM2 & TSS2 Software. https://github.
com/tpm2-software Last access: June 10th, 2021.

[25] Adrian Taylor, Nathalie Japkowicz, and Sylvain Leblanc. 2015. Frequency-based
anomaly detection for the automotive CAN bus. 45–49. https://doi.org/10.1109/
WCICSS.2015.7420322

[26] Trusted Computing Group. 2019. Trusted Platform Module Library Specification,
Family “2.0”, Level 00, Revision 01.59 – November 2019.

[27] M.Wolf, A.Weimerskirch, and C. Paar. 2004. Security in Automotive Bus Systems.

https://doi.org/10.1007/978-1-4302-6584-9_9
https://doi.org/10.1007/978-1-4302-6584-9_12
https://doi.org/10.1007/978-1-4302-6584-9_12
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
http://www.w3.org/TR/REC-xml/
https://www.automotivelinux.org/
https://www.automotivelinux.org/
https://www.yoctoproject.org/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
https://doi.org/10.1109/TIFS.2018.2869351
https://doi.org/10.1109/TIFS.2018.2869351
http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset
http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset
https://doi.org/10.4271/2021-01-0140
https://doi.org/10.1016/j.vehcom.2021.100338
https://doi.org/10.1109/TCAD.2020.3012749
https://doi.org/10.1109/PST.2017.00017
https://doi.org/10.1109/PST.2017.00017
https://doi.org/10.4271/2019-01-0481
https://github.com/linux-can/can-utils
https://doi.org/10.1109/PST.2018.8514157
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software
https://github.com/tpm2-software
https://doi.org/10.1109/WCICSS.2015.7420322
https://doi.org/10.1109/WCICSS.2015.7420322

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Vehicle Internal Architecture
	2.2 Trusted Platform Module
	2.3 Related Studies

	3 Approach
	3.1 Overview
	3.2 Rule Definition Language
	3.3 Rule Processing Engine
	3.4 Secure Logging

	4 Experiments
	4.1 Implementation details
	4.2 Experimental Results

	5 Conclusions
	6 Acknowledgments
	References

