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Despite recent advancements in machine learning algorithms, well-established models like the Long Short-Term Mem-
ory (LSTM) are still widely used for modeling tasks. This paper introduces an enhanced LSTM variant and explores
its capabilities in Multiple Input Single Output (MISO) chaotic system modeling, offering a large-scale analysis that
focuses on LSTM gate-level architecture, the effects of noise, non-stationary and dynamic behavior modeling, system
parameter drifts, and short- and long-term forecasting. The experimental evaluation is performed on datasets generated
using MATLAB, where the Lorenz and Rossler system equations are implemented and simulated in various scenarios.
The extended analysis reveals that a simplified, less complex LSTM-based architecture can be successfully employed
for accurate chaotic system modeling without the need for complex deep-learning methodologies. This new proposed
model includes only three of the four standard LSTM gates, with other feedback modifications.

Chaotic systems are widely studied in various domains, in-
cluding mathematics, engineering, and computer science.
These systems often exhibit strange and unpredictable be-
haviors and are extremely sensitive to initial conditions.
These behaviors are observed in many natural systems,
such as fluid dynamics and celestial mechanics, and have
been identified in several artificially constructed systems
as well. Due to their complexity and non-linear chaotic
behaviors, modeling such systems often becomes challeng-
ing, leading to high-complexity solutions. This paper in-
troduces an enhanced Long Short-Term Memory (LSTM)
variant for Multiple Input Single Output (MISO) chaotic
system modeling, validated through an extensive exper-
imental evaluation. The valuable results of this study
can be utilized to deploy simple and efficient models with
promising capabilities, including low sensitivity to noise
and robustness to system parameter changes and non-
stationarity. As revealed by extensive analysis, the pro-
posed enhanced LSTM variant can be successfully used
for both short-term and long-term forecasting, even in the
presence of missing values.

I. INTRODUCTION

Chaos theory is a branch of mathematics and physics
that analyzes complex dynamical systems with unpredictable
behaviors caused by their extreme sensitivity to initial
conditions!. Today, however, chaotic systems are studied
across a wide range of domains and areas of study, including,
but not limited to, Mathematics2, Engineeringl, Education?,
Medicine* and Computer Science’. These systems exhibit
chaotic behaviors, behaviors that can be observed in a mul-

titude of natural systems as well, including fluid dynamics,
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celestial mechanics, and even artificially constructed systems
that include traffic flow or financial markets. Moreover, as
stated by numerous authors, the concept of chaos has been
identified in a multitude of systems in a wide variety of
domains!©.

On a less granular scale, chaotic systems are a subclass
of the larger class represented by nonlinear systems. As de-
scribed by Schoukens and Ljung’, any system that deviates
from linearity is considered nonlinear. Generally, nonlin-
ear systems are characterized by the absence of linear rela-
tionships between inputs and outputs. The process of creat-
ing simpler representations of the underlying relationships of
these systems is known as modeling. Well-known modeling
techniques include white-box, black-box, and gray-box mod-
eling. White-box modeling involves constructing and using
the differential equations that govern the dynamics and be-
havior of the system, black-box modeling approaches usually
involve creating system representations utilizing the observa-
tions collected from such systems, and gray-boxes are a mix-
ture of the previous two methodologies’.

This paper explores the modeling of chaotic Multiple Input
Single Output (MISO) systems, which are described by the re-
lationship between multiple inputs, hidden internal states, and
a single output. Mathematically, these systems can be rep-
resented as v(¢) = f(u(t),h(z);0) or, alternatively, as v(r) =
Sf(u(t),h(t);0(1)), where v(¢) is the output, u() represents the
external inputs, A(¢) denotes the hidden state variables, and 6
represents the parameters of the system, which may also vary
with time introducing non-stationairty.

Furthermore, this paper addresses data-driven modeling
techniques, using machine learning approaches, namely Long
Short-Term Memory (LSTM) models. In our previous work,
we explored the influence of hyperparameters on the perfor-
mance of LSTMs for nonlinear systems modeling®, where we
proposed an enhanced LSTM variant with promising results.
This model was later successfully utilized for anomaly detec-
tion in nonlinear systems’.

In this paper, a continuation of our previous work extends
the applicability of such models to chaotic systems as well,
with an extensive and comprehensive architectural analysis.
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This applicability is demonstrated by training the models with
data generated from a single set of initial conditions with a
fixed parameter value to multiple initial conditions with addi-
tional parameter values, and testing them with datasets gener-
ated from a wide variety of initial conditions. Moreover, this
paper explores new LSTM-based architectures and the possi-
bility of further utilizing the resulting models in the direction
of chaotic systems monitoring to detect any intervention on
variables or system parameters based on the prediction errors.
In summary, the major contributions of this large-scale study
are as follows.

* Introduction of an enhanced LSTM model for MISO
chaotic systems modeling, named LSTMTF. This
model incorporates the previously observed output vari-
able as an additional input during training and infer-
ence.

A large scale study that includes an extensive empirical
evaluation of the enhanced LSTMTF model across var-
ious scenarios and configurations, including gate-level
architectural analysis, the influence of different types of
noise, and short- and long-term prediction capabilities.

Evaluation of the modeling performance for non-
stationary and dynamic behaviors of the system under
the variable time-dependent parameter condition.

* Design, development and validation of simpler and
more efficient LSTM-based architecture based on the
previous extensive experimental assessment.

Results that illustrate the modeling and prediction ca-
pabilities of these models, even when trained with data
generated from a single set of initial conditions and
tested with data generated from various random initial
conditions. The models presented in this paper contain
a single hidden layer with few hidden units.

This remainder of the paper is organized as follows. Section
II presents relevant related studies. The proposed methodol-
ogy is presented in Section III. This is followed by experi-
mental results in Section IV. Results pertaining a new LSTM-
based architecture are presented and discussed in Section V.
Finally, the paper concludes in Section VI.

Il. RELATED WORK

Although nowadays chaotic system modeling and chaotic
time series prediction pose interesting and challenging re-
search directions, this field has been extensively explored for
more than two decades. Recurrent neural network-based so-
lutions have been shown to yield promising results in this
direction'®!2, For example, Zhang and Xiao'? investigated
the application of classic Recurrent Neural Network (RNN)
architectures to model time series originating from chaotic
systems. The authors proved that such architectures are able
to perform both one-step and multi-step ahead accurate fore-
casts.

In a different direction, Liu-Schiaffini et al.'* proposed a
recurrent neural operator (RNO) to detect tipping points in

non-stationary and chaotic dynamical systems. Their pro-
posed model is trained on pre-tipping dynamics and is fur-
ther utilized to detect tipping points in the future by utiliz-
ing an uncertainty-based approach. The authors validated
their model in multiple scenarios, including Lorenz system
datasets.

Patel and Ott"> explored machine learning techniques to
predict tipping points in chaotic dynamical systems. The au-
thors showed that reservoir computing-based (RC) approaches
trained on pre-tipping point orbits of non-stationary dynam-
ical systems are capable of useful tipping point and post-
tipping point predictions. Similarly to the work'4, the authors
also demonstrated their approach on the Lorenz system. An
interesting observation made by the authors highlights the fact
that such approaches require careful and extensive hyperpa-
rameter tuning for accurate predictions of tipping points. Sim-
ilarly, Patel et al.'® explored machine learning approaches for
chaotic dynamical systems prediction. The authors also in-
troduced a hyperparameter optimization methodology for the
utilized RC model. Their approach was validated in different
scenarios, including the Lorenz system. It is worth noting that
the authors did not perform prediction or forecast on every
point, rather only on the tipping points.

An LSTM-based modeling approach for the Lorenz system
was proposed by Dubois et al.'”. This solution includes a
deep learning model composed of LSTM and dense layers,
capable of accurate predictions compared to simpler methods,
such as the Kalman filter. The proposed model takes as input
all the variables and predicts future values of the same vari-
ables. The authors also considered additional model inputs
that consist of the first and second derivatives. Furthermore,
they showed that LSTM-based solutions can effectively pre-
dict multiple steps ahead. One notable mention is that the
authors plan to extend their work with hyperparameter tuning
approaches for the proposed model.

Considering that our paper performs an extensive bench-
marking and performance analysis for the LSTM model, we
will also explore other studies that considered similar mod-
els for comprehensive evaluations. In this direction, Thomas
Brueuel, a member of Google’s research department, analyzed
the performance of LSTM-based classifiers'®. In his work,
the author engages several aspects, including hyperparameters
and non-liniarities, and their effects on the classification per-
formance of an LSTM model. The list of studied hyperparam-
eters includes the number of hidden units, the learning rate,
and the size of the training mini-batch. The classification per-
formance is evaluated on two popular handwriting datasets,
i.e., MNIST and UW3. Among the results of this study, it is
worth mentioning the dependence of the models on the learn-
ing rate. Conversely, the size of the mini-batch influenced the
performance to a lesser extent. Furthermore, softmax train-
ing obtained superior results compared to the least squares
method. The final conclusion of this study revealed that the
models without peephole connections yielded the best perfor-
mance.

Among the few existing large-scale studies on the perfor-
mance of LSTMs, we find the work of Greff et al.!°. This
study focused on speech and handwriting recognition, and
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polyphonic music modeling. The authors studied various
LSTM architectures that include gate disabling and removal
of activation functions. The authors utilized the standard ac-
tivation functions, i.e., the sigmoid and hyperbolic tangent.
Additionally, similarly to the previous study, the effects of
various hyperparameters were analyzed, including the learn-
ing rate, hidden layer size, momentum, and input noise. One
of their findings indicates that the learning rate had the most
effect on performance, this followed by the number of LSTM
cells on the hidden layer. Moreover, the authors showed that
adding noise to the model inputs increased the training time
and also decreased performance. Overall, in this study, the
authors tested eight model variants and showed that standard
LSTMs performed similarly analogized to the various archi-
tectures tested. It is worth mentioning that the hyperparam-
eter analysis did not consider all values within well-defined
ranges but rather utilized random searching techniques for
each value. Furthermore, not all LSTM gates and architec-
tures were considered.

The modeling performance of LSTM-based solutions was
also highlighted in a recent paper by Al Nassan et al.>. Here,
the modeling and prediction performance of a standard deep
learning LSTM model is tested on the Lorenz system dataset.
Although the proposed LSTM-based solution obtained no-
table results in terms of MSE and RMSE, even compared to
similar approaches, the paper lacks important details about the
utilized architecture and hyperparameters. This makes it close
to impossible to recreate the experimental evaluation settings.
Similarly to Dubois et al.!”, the authors utilized the three vari-
ables time-series as input, to predict the following values of
the three variables.

In a slightly different direction, Farzad et al.?! investigated
various activation functions for an LSTM model used for clas-
sification tasks. The authors tested a total of 23 functions
for the input, forget and output gates. This study utilized
three datasets, including IMDB, MNIST and Movie Review.
An interesting result showed that less known activation func-
tions, including Elliott, modified Elliott, and softsign, yielded
slightly better results compared to most popular activation
functions. Furthermore, the activation functions that worked
in the [—0.5, 1.5] range obtained better results, and expanding
the codomain range produced a generally better model classi-
fication performance.

In addition to the studies presented above, this work ad-
vances the long line of research in the direction of data-
driven machine learning-based approaches for chaotic sys-
tems modeling. In this paper, an enhanced LSTM model,
named LSTMTEF, is presented. This model takes as input the
external measured system input variables, together with previ-
ously observed output variable, and predicts the next value of
the system’s output variables, in MISO systems. This model
is extensively evaluated from an architectural point of view,
including the effects of noise, long- and short-term predic-
tions, and in-depth analysis of the LSTM model gates. The
LSTM gate analysis also includes the activation evolution of
the gates over time and future LSTM architecture simplifi-
cation and complexity reduction by disabling certain gates
in the model cells. Compared to other studies, this in-depth

systematic analysis specifically targets stationary and non-
stationary chaotic system modeling using such approaches.
Additionally, compared to other deep-leaning solutions with
higher computational complexity, this paper presents a sim-
pler model with a single hidden layer, which can be further
simplified by the deactivation of either the entire cell gate, or
the previously observed output true values.

Others have pointed out the importance of hyperparameter
analysis for recurrent models. Although this paper addresses
an architectural evaluation, in our previous work we addressed
this final issue for various types of LSTM-based models®, in-
cluding feature analysis techniques. As such, we consider this
work to be a continuation of an extensive and complete LSTM
model analysis, together with possible application in the di-
rection of chaotic systems modeling and anomaly detection.

1. METHODS

This section presents the standard LSTM model alongside
the enhanced version proposed for chaotic systems modeling.
It also includes a description of the analyzed system, e.g., the
Lorenz system. In addition, extensive experimental scenarios
are thoroughly described, along with the evaluation metrics
used.

A. Long Short-Term Memory Model

LSTM models, initially proposed by Hochreiter and
Schmidhuber in 199772, were designed as a solution to ad-
dress the vanishing and exploding gradient problem encoun-
tered in vanilla versions of RNNs. Over time, LSTM models
gained substantial popularity and became increasingly pre-
ferred in the field. LSTMs feature memory units that can
capture both long- and short-term dependencies in time-series
data. A visual representation of the standard LSTM cell is
illustrated in Figure 1.

A typical LSTM layer comprises blocks containing mem-
ory cells and four gates, including input, candidates, output,
and forget gates. Moreover, each block features two recur-
rent connections, namely the hidden state and the cell state
representing short-term and long-term memory, respectively.
The four gates control the flow of information to and from
the memory cell. As implied by their names, the forget gate
manages discarded information, the input gate regulates infor-
mation to be stored, and the output gate computes the current
output of the cell. Although some papers only describe three
gates, the input gate is composed of two components which
also include the cell candidate computation gate.

Without loss of generality, in the remainder of this paper,
the term cell gate will refer to the cell candidate gate, as illus-
trated in Figure 1. The LSTM cell equations for the gates are
as follows.

F(r) = sigm(#pX(t) + %rh(t — 1)+ bp). (1)
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FIG. 1: Ilustration of a single LSTM Cell together with the gates, connections, activation functions, weights, and internal
states.
I(r) = sigm(#1X(t) + Zh(t — 1)+ by). 2)
F(t) = sigm(#rX(t) + Vry(t — 1)+ %h(t — 1) +br).
A(t) = tanh(#3X(t) + Zah(t — 1) +by). 3) (1) = sigm(VEX(8) + Vpy(t = 1) + %rh(t — 1) + br) o
O(t) = sigm(WoX(t) + Zoh(t — 1) +bo). 4) (1) = sigm(W1X(1) + Vpy(t — 1)+ %h(t = 1) +by). - (8)
c(t) =F(r)-c(r—1)+1(r) - A(z). ®) A(t) = tanh(#3 X (1) + Yay(t — 1)+ Uh(t — 1) +bs). (9)
h(r) = O(¢) - tanh(c(r)). 6)

Here, the forget gate is shown in Equation 1, the input gate
in Equation 2, the calculation of the cell state in Equation 5,
the candidates of the cells in 3, the output gate in 4 and the
computation of the hidden state in 6. Moreover, #,7, and %
denote the weight matrices, X is the input vector, A denotes
the vector of new candidates for the cell state, ¢ is the current
cell state, and b denotes the bias vectors.

The enhanced LSTM variant, named LSTMTF, as we orig-
inally proposed it?, incorporates the previous true output
value as an additional input, during the training and inference
stages. This approach was inspired by the original Teacher
Forcing (TF) algorithm?3. Additional information on LSTMs
with TF is available in previous work®?, where it was demon-
strated that such models can outperform various other existing
techniques.

The equations for LSTMTF at time ¢ are presented below.
Equation 7 denotes the forget gate, Equation 8 denotes the in-
put gate, the cell state computation is shown in Equations 11,
the cell candidate gate is presented in Equation 9, Equation
10 shows the output gate computations, and Equation 12 il-
lustrates the hidden state. Additionally, Equation 13 describes
the computation of the model’s predicted output at time ¢, fur-
ther denoted as $(¢).

O(t) =sigm(#oX(t) + Yoyt —1)+Zoh(t— 1) +bp). (10)

c(t)=F()-c(t—1)+1(r)-A(r). (11)
h(z) = O(¢) - tanh(c(r)). (12)
(1) = gz)sh(l) + by. (13)

Here, &7 denotes the weight matrix, X is the input vector,
A denotes the vector of new candidates for the cell state, ¢ is
the current cell state and b denotes the bias vectors. Let H
represent the number of units on the hidden layer. Given a
system with m number of measured signals, for any output all
other m — 1 signals are considered input in the model. If there
are multiple outputs in the system, for each output a MISO
system is created, as described above. Including the additional
input, the number of inputs will be equal to m. The input
vector X will be of size X € R"*!. The dimensionality of the
weight matrices is as follows: ¥ € RE*(m=1) ¢ RHx1
U € REXH apnd &2 ¢ RI*H As nonlinear activation functions,
the Sigmoid and Hyperbolic Tangent functions are utilized, as
they appear in Equations 1-6. A visualisation of the LSTMTF
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FIG. 2: Illustration of a single LSTMTF Cell together with the gates, connections, activation functions, weights, and internal
states.

cell architecture, with the previous observed output variable
fed as additional input, is illustrated in Figure 2.

Let Y denote the vector of observed output values,
where [y(0),y(1),...,y(t)] € Y. Likewise, let ¥ denote
the vector that contains the LSTMTF’s predictions, where
[$(1),9(2),...,9(z)] € Y. The prediction error vector is com-
puted as the difference between ¥ and ¥. The enhance-
ment introduced to the LSTMTF model does not include
additional recurrent connections from the output layer to
the hidden layer; thus the Back Propagation Through Time
(BPTT)'92426 algorithm is utilized, where the backward
propagation equations remain unchanged.

B. Lorenz System Data Generation

The Lorenz system, as originally proposed in 1963, repre-
sents a simplified model for atmospheric convention and the
unpredictable behavior of the weather. In the original paper?’,
the author introduced a theory to model the dynamics of a fluid
warmed from below and cooled from above. In the field of
chaos theory, this system remains a paradigm, as it effectively
captures a wide variety of features of chaotic dynamics. Close
initial conditions lead to very different trajectories, making the
Lorenz system a chaotic dynamical system®28,

The Lorenz system equations are shown in Equation 14.
This system is defined by the following parameters &, p, and
B. In the current context, o represents the Prandtl number, p
represents the Rayleigh number, and 3 is a geometric factor®.
As originally described, the values of the parameters o, p,
and f3 are set, respectively, to 10, 28 and 8/3. The Lorenz
system can perform complex and non-stationary dynamics
based on the parameters. Generally, a stationary variant of the
system is studied with parameter values held constant, while

non-stationary variants are explored with dynamic and time-
dependent values of p, with ¢ and 3 held constant?®.

dx

E*G(Y*x)

dy

= _ _ ) 14
o =P =)=y (14
dz

E—Xy—ﬁz-

Recall the introduction section, where the general
form of chaotic MISO systems was described as v(¢) =
f(u(t),h(t);0(z)). For the Lorenz system, variables x and y
are considered system inputs while z is considered the system
output. Specifically, for the Lorenz system, the previous equa-
tion can be rewritten as z(¢) = f(x(¢),y(¢),h(¢); 0, B,p(¢)). As
previously stated, to introduce non-stationarity, the p parame-
ter values are varied over time. Additionally, the current paper
will also consider a noisy system. As such, various types of
noise are added at each time step, as presented in the following
subsection.

The datasets used for the experimental evaluation are gen-
erated using MATLAB, i.e. utilizing the ODE45 solver?® with
multi-step integration. The ODE45 solver function imple-
ments the Runge-Kutta method with a variable time step for
efficient computations. For each respective scenario, the sim-
ulations start with random initial conditions in the range [0,
1]. The time span for each simulation ranges from 1 to 100
with a time step of 0.01.

For each experimental scenario, as described in the next
sections, individual datasets are constructed. Each simulation
contains 9901 data points, and each dataset contains 100 simu-
lations with random initial conditions. For each scenario, each
dataset contains a total of 990,900 data points. If, for example,
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a scenario includes variants with and without noise or multi-
ple parameter values, each unique noisy dataset will contain
100 simulations of 990,900 observations. For the experiments
in subsesction III C, the testing sample rates differ, resulting
in fewer data points. To account for this difference, the num-
ber of simulations is increased to 300, resulting in 2,970,300
observations. For scenarios where the parameter p varies in
time, for each case, a separate dataset is created.

A visualization of the generated data is illustrated in Fig-
ure 3. Here, 5000 data points are shown in three scenarios:
without noise, with noise, and a non-stationary scenario.

C. Noise, Forecasting and Data Resampling Analysis

The first analysis focuses on the effects of the data accu-
racy and availability on the model identification and predic-
tion capabilities. Considering real-life applications, where
measurements contain different types of noise resulting from
sensor readings or the communication medium, the model is
analyzed in the presence of random Gaussian and uniformly
distributed noise at various levels. Moreover, a scenario is
explored with the assumption that system measurements at
higher sample rates might be available only for short periods,
or certain operating conditions might suffer major changes in
time resulting in subsequent missing values. This results in
a low availability of measured output data during inference.
In addition, this set of experiments also explores the predic-
tion capabilities of models trained and evaluated with different
sampling rates.

Noise Influence Analysis

In this scenario, the models are trained with noise-free ob-
servations and tested in the presence of two types of noise at
different intensities. The Gaussian or normal distributed noise
is further denoted as .4 (m, s), where m denotes the mean and
s the standard deviation. The uniformly distributed noise is
further denoted as % (%, %), where %; and %}, denote the
upper and lower limits of the values. For each type of noise, at
each time step, a random value is generated and added to the
observed values. The noise variables are denoted as &,, &, and
&,. Consequently, the Lorenz system equations are updated as
follows:

& o1+ &)
Y —rp-9-y+&0) as)
d

o =B &),

Forecasting Analysis

Here, the models are trained with data generated at a fixed
sample rate. During inference, the models are evaluated un-
der the assumption that the observed output true values be-
come available at some point in the future. To account for the
missing values between the true observed values, the previ-
ously predicted output values are utilized as additional input

for subsequent time steps. Specifically, in this set of experi-
ments, the multistep forecasting capabilities of the model are
tested under the assumption that the predicted value (e.g., the
output variable) is available only at various rates.

Data Resampling Analysis

Multiple models are individually trained on datasets sam-
pled at numerous rates and tested on datasets sampled at var-
ious other rates. This addresses real-life scenarios where sys-
tem measurements might be sampled at different frequencies
during inference due to system behavioral changes that could
appear in time. The prediction method explored here is one
step ahead, while long-term forecasting was addressed above.
Here, the testing subsets are created from the original files, by
only selecting observations at the given frequencies.

D. Parameter Influence and Non-stationarity Analysis

Here, the influence of changes in the system parameter val-
ues is analyzed. This involves training the model with fixed
values for a given parameter and performing inference with
dynamic parameter values. In a realistic scenario, some pa-
rameters might be explicitly or implicitly hidden and may
exhibit stochastic behaviors. Moreover, in chaotic systems,
changes in parameter values can lead to unpredictable and
chaotic behaviors or transitions from one-piece to multi-piece
chaotic attractors!©.

Parameter Influence Analysis

Certain external interventions might only affect such pa-
rameters, indirectly affecting the system‘s behavior. As a re-
sult, the system might enter transient states or even faulty or
anomalous states. This set of experiments underlines the limi-
tations of the model in terms of accurately predicting the next
values when such interventions occur.

Here, the model is trained with fixed values for a given pa-
rameter, and tested with various other parameter values. Ad-
ditionally, the model is also trained with a set of time series
data generated with multiple parameter values. In this case,
the training and testing datasets are generated with multiple
fixed values for the parameters. Specifically, the parameter
value is increased using a step-wise methodology. Starting
from an initial value, the parameter is incremented by a fixed
amount every 10 simulations, with initial conditions chosen
randomly in each simulation. This indefinitely causes the lack
of trend in the generated data. Nevertheless, the next set of
experiments will explore the case where the parameter is also
time-dependent, introducing not only non-stationarity but also
additional chaotic and unpredictable behavior in the system.

Non-stationarity Analysis

In the current scenario, the model is trained with observa-
tions generated with various fixed parameter values and tested
with parameter values generated using time-dependent expo-
nential and sin functions. Following a similar approach to'>
and as stated above, this approach introduces a variational
trend in the data. In'® and!3, the authors utilize similar time-
dependent functions for the system parameters.

The two approaches to computing the parameter values at
each time step are illustrated in Equations 16 and 17.
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FIG. 3: Three-dimensional trajectory of the Lorenz system with various random initial conditions: (a) Noiseless, (b) Noisy
(Gaussian Noise), (c) non-stationary (sin).

p(t)=po+pi-e’". (16)

p(t) = po+pi1-sin(y*t)+ W *t. (17)

In Equation 16, the values for pg, p; and T are constant
throughout each simulation. Similarly, the parameters pg, p1,
Y and u from Equation 17 are also fixed.

E. LSTMTF Gate Analysis

In this scenario, three sets of experiments are performed.
In the first set of experiments, the activation values of the
LSTMTF and LSTM gates are analyzed during inference. The
second set of experiments, as an extension to the previous set,
investigates the effects of disabling the additional input, rep-
resented by the previous observed output value, in the four
LSTMTF cell gates. In the third and last set of experiments,
the effects of disabling the LSTMTF cell gates are analyzed.

LSTM Models Gate Activations Analysis

Gate activation values are extracted for the four gates dur-
ing inference on a testing subset. This is analyzed for both
architectures, standard LSTM and LSTMTF. These values are
extracted after the computation of their respective activation
functions, namely the sigmoid and hyperbolic tangent, as de-
scribed by Equations 1 - 12 and presented in Figures 1 - 2.
This set of experiments is required to understand the differ-
ences between the two models, starting from the cell gate
level.

LSTMTF Gate Modifications Analysis

Here, for each gate individually, and all possible gate com-
binations, the previous observed true value is disabled (re-
moved) while the exogenous inputs are kept. The effects of
these procedures are analyzed when the additional input is dis-
abled during training and inference. Among the gate combina-
tions, the following are included, disabling the previous out-
put true value individually only for input, output, forget gates,
cell candidates, input-forget, forget-output, input-forget-cell
candidates. A visual representation is also shown in Figure 2.
When the previous output true value is disabled in the gates,

Equations 7, 8, 9, 10, become the same as Equations 1, 2, 3, 4,
for each specific case. For example, when acting on the forget
gate, the LSTMTF cell will be described by Equations 1, 8, 9,
10. The same applies to all other scenarios.

LSTMTF Gate Disabling Analysis

Disabling the gates changes the LSTMTF equations as fol-
lows. In the case where the Forget gate is disabled, the cell
state (e.g., the long-term memory) is not updated with any
previous information; thus, it retains everything from the pre-
ceding time steps. In this case, Equation 11 is changed as
shown in Equation 18 and Equation 7 is not utilized.

c(t)=c(t—1)+1I(z)-A). (18)

In contrast, when the input gate is disabled, the cell state is
partially updated with the new information, only from the cell
candidates, as described in Equation 19. However, the forget
gate still updates the cell state, and Equation 8 is not utilized.

c(t)=F@)-c(t—1)+A(2). (19)

Next, while the output gate is disabled, the cell state is up-
dated by both the input and forget gates, and the hidden state
(e.g., short term memory) becomes equal to the cell state. Al-
though this reduces the memory connection to the forthcom-
ing time steps, the hidden state is still updated differently,
compared to a simpler RNN model with a single recurrent
connection. The change in the LSTMTF cell equations ap-
pears in the hidden state computation, as shown in Equation
20.

h(7) =tanh(c()). (20)

In the final case, where the cell candidate is disabled, the
cell state values are directly updated by the forget gate and in-
put gate. These are differentiated only by point-by-point mul-
tiplication in the case of the forget gate, and point-by-point
addition for the input gate. This is presented in Equation 21,
and Equation 9 is not utilized.
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c(t)=F(@)-c(t—1)+1(z). (1)

As mentioned in the previous section, a similar approach
was performed in'?, where the authors tested the effects of
disabling only one gate at a time for an LSTM-based classi-
fier. In contrast, this paper tests the combination of multiple
simultaneous disabled gates in LSTM regression models. Al-
though numerous combinations are tested, there are extreme
cases where disabling three gates basically converts the LSTM
model into a simple RNN architecture.

IV. EXPERIMENTAL ANALYSIS RESULTS

This section presents the experimental results for each sce-
nario as described above. The experimental assessment was
implemented in Python, using Keras*® with the TensorFlow
backend’!. The evaluation was performed on a Lenovo Le-
gion laptop featuring an AMD Ryzen 5 5600H CPU, 32 GB
DDR4 RAM, running the Windows 10 PRO. To access the
LSTM gate activation values and to change the architecture
at the gate level, the Keras and Tensorflow implementations
were modified. To obtain deterministic results, the initial pa-
rameters of the models (e.g., weight matrices) could be gener-
ated using the same seed. However, the randomization of the
initial seed induces realistic and probabilistic results. To min-
imize the possibility of biased results due to random weight
initializations, each experiment was repeated 10 times. The
results represent the average of these 10 repetitions for each
scenario.

A. Evaluation Metrics

To measure the prediction performance of the deployed
models, the following metrics are utilized throughout this pa-
per: Mean Squared Error (MSE) as shown in Equation 22, the
symmetric Kullback-Leibler divergence’? (e.g., Jeffreys>>)
(SKL), from Shannon’s entropy family4, as shown in Equa-
tion 23, and the coefficient of determination R? illustrated in
Equation 24.

1 n
MSE =¥ (v =) (22)
i=1
I)i
SKL(P.Q) =} (P~ Qi)ln 7. (23)
n L 5)2

In Equations 22 and 24, y; represents the observed value, y;
denotes the predicted value, ¥ is the mean of the observed val-
ues, and n represents the number of observations. As for SKL

divergence, in Equation 23, P and Q represent the distribu-
tions of the model predictions and true values.

While MSE is self-explanatory, the SKL is utilized to mea-
sure the divergence between predicted and actual probability
distributions, offering a way to quantify the similarity between
two distributions. Since the SKL is symmetric, it ensures that
the divergence in either direction -from the observed to the
predicted values or vice versa- is treated equally.

B. Model Parameters

The training hyperparameters and the architecture of the
LSTM and LSTMTF models are as follows: Input sequence
length: 40, training minibatch size: 32, training epochs: 100,
learning rate: 0.01, learning rate decay rate: 0.04, learning
rate decay steps: 40, hidden layers: 1, model layers: 3 (i.e., 1
linear input, 1 hidden, 1 regression output), hidden units 32,
weights initialization Glorot Normal®>, output delay for input:
1, prediction mode: one-step and multi-step ahead. In addi-
tion, the model is configured to run in stateful mode. Namely,
the hidden and cell states are not reset after each sequence, but
only after each experiment. The remainder of the parameters
and hyperparameters are used with their respective default val-
ues. As previously stated, the behavior of models for different
hyperparameters has been addressed in previous work®. The
inputs for the standard LSTM model are x(t) and y(t), while
the output is z(t). For the LSTMTF model, the inputs are x(t),
y(t), and z(t-1) while the output is z(t) (see Equation 15).

The utilized LSTM models are trained using a sequence-
based methodology. As Keras does not inherently support
model conversion, for point-by-point prediction and forecast,
after training, a new model was created and the parameters
were transferred. These parameters include weights, biases,
and the initial states of the model, e.g., hidden and cell states.
The initial states are considered as the final values that result
after the model is trained.

C. Baseline Model Results

Before presenting the results, the prediction performance
of the two models is illustrated in Figure 4. The observed
and predicted values are shown at various resolutions, rang-
ing from 50 to 5000 time steps. In this case, noise-free
datasets were used for both training and testing. The models
were trained on 15,000 data points and tested on 990,900 ob-
servations across 100 simulations. The enhanced prediction
capabilities of the LSTMTF model are clearly visible com-
pared to the standard LSTM model. Numerically, over the
unseen testing set, the results are as follows. For the LSTM
model the MSE was 0.001726, SKL was 0.201782, and R?
was 0.941223. For the LSTMTF model the MSE value was
0.000057, SKL value was 0.002072, and the R? value was
0.998056. In this case, the LSTMTF model outperformed the
vanilla model by over 100 times. These results are further
used as reference values for the following experimental sce-
narios.
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FIG. 4: Ilustration of the LSTMTF (Top row) and LSTM (Bottom row) prediction performance over 50, 500, and 5000 values
from the testing set.

D. Noise, Forecasting and Data Resampling Analysis Results

For this set of experiments, the Lorenz system parameters
used for data set generation are as follows: p =28, o = 10,
and B =8/3.

Noise Influence Analysis Results

The effects of various types of noise on the performance
of both the LSTMTF and LSTM models are shown in Table
L. In this context, .#"(Mean, Standard dev.) represents Gaus-
sian (normal) noise, and %/ [min, max] represents uniform
noise generated within the [min, max] range. The noise val-
ues were randomly generated and added to each observation
at each time step, as previously discussed.

Although there were small variations in performance, nei-
ther the LSTMTF nor the LSTM model was significantly af-
fected by the addition of noise, even at higher levels. This
finding was consistently confirmed across all three metrics.
Overall, the models demonstrated robustness against both
types of noise, even at higher intensities. The robustness to
noise was also confirmed by other research using data from
other fields!®, namely speech and handwriting recognition,
and polyphonic music modeling. However, these findings can
be valuable for solutions that utilize noise for data privacy
mechanisms, such as the works of Roman et al.3¢-37,

Forecasting Analysis Results

Table II shows the long-term forecasting results of the
LSTMTF model. The model was trained and tested with var-
ious combinations of data sample rates. During inference, the
previously observed output variable is fed to the model at dif-
ferent rates, while in between the previously model predic-

tions are given to the model.

The sample rates, as shown in Table II, represent how many
values are forecast before using the previously observed true
value. At the 0.01 rate, all true values are used. At the 0.02
rate, the previously observed output variable is used as ad-
ditional input after every predicted value. For the 0.1 rate,
the observed value is used after every 10 predictions. At the
0.5 rate, 50 predictions are made before using the true output
value. Finally, the "all" column indicates that the previously
predicted value is always used, and the true output value is
never utilized.

The models trained with all available observations (e.g.,
0.01 sample rate) achieved the best performance, even when
forecasting multiple steps ahead or using only the previously
predicted value as an additional input. Specifically, the best
performance was observed when predicting 2 and 10 steps
ahead, with the MSE increasing from 0.000039 to 0.000285
and the SKL rising from 0.000195 to 0.003040. Conversely,
the worst-performing models were those trained with data
sampled at a rate of 0.5, as significant information was dis-
carded, preventing the models from capturing and modeling
the complex relationships necessary for accurate regression.
These results indicate that in this specific scenario, the models
require more data for effective training. However, as shown in
Table II, when higher sample rates are used for training, the
LSTMTF model can be employed for long-term forecasting
and still outperform the standard LSTM model in one-step-
ahead prediction. Nonetheless, these results highlight both
the forecasting limitations and strengths of the models, which
may be advantageous depending on the context of data avail-
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TABLE I: LSTMTF and Standard LSTM prediction performance with various noise levels. The models were trained with
15,000 data points and tested on 990,900 data points (100 simulations).

LSTMTF Standard LSTM
MSE SKL R? MSE SKL R?
A(0,0.1) 0.000036 0.001132 0.998748 0.001882 0.284222 0.936115
(0, 1) 0.000056 0.002209 0.998073 0.001753 0.338749 0.940510
%1-0.01,0.01] 0.000048 0.002078 0.998344 0.001927 0.189490 0.934297
%1-0.03, 0.03] 0.000045 0.001360 0.998443 0.001789 0.302790 0.939179
U[-1, 1] 0.000050 0.001829 0.998291 0.002136 0.262704 0.927557

TABLE II: LSTMTF MSE and SKL prediction performance with various sample rates for training and different rates for the
observed/predicted previous output value fed as input. This experiment was performed over 990,000 data points.

Testing
Missing Values
Rate 0.01 0.02 0.1 0.5 all
MSE SKL MSE SKL MSE SKL MSE SKL MSE SKL

0.01 0.000057 0.002072  0.000060 0.002442 0.000285 0.003040 0.001385 0.025248 0.001717  0.03250
0
E 0.02 0.000319  0.009235 0.000671 0.015010 0.004982 0.030222 0.020681 0.354019 0.022821 0.48674
E 0.1 0.010525 0.062329 0.015951 0.070772 0.043521 0.356247 0.060211 0.963892 0.061859  1.05310

0.5 0.029262 0.547036 0.020187 1.280027 0.016595 1.400291 0.015822 1.663186 0.015630  1.94703

ability in real-life scenarios.

Data Sample Rate Analysis Results

A key distinction between this set of experiments and the
previous one is that only the observed values are fed to the
models at varying rates. Specifically, the models perform one-
step-ahead predictions using the observed values as input and
not the previously predicted values. Tables III and IV show the
experimental results for both the LSTMTF and LSTM models,
measured utilizing the MSE and SKL metrics.

Similarly to the previous set of experiments, the models
trained with the data sampled at a 0.01 rate obtained the best
overall results in terms of SKL for the LSTMTF model. For
the standard LSTM model the variability in the results was
higher. In terms of MSE there were some cases where mod-
els trained with a lower sample rate obtained better results.
For example, the model trained with the 0.05 rate obtained
better results when tested against data sampled at the 0.1 rate.
The results also revealed a considerable decrease in SKL com-
pared to the previous set of experiments, especially for the 0.5
rate. Tables III and IV show a general downward trend in
performance as the sample rate increases, confirmed for both
models. Overall, the LSTMTF model outperformed the stan-
dard LSTM model in all cases.

E. Parameter Influence and Non-stationarity Analysis Results

The Lorenz system parameters are:

* For the parameter influence analysis: ¢ = 10, B = 8/3,
p = (25,50,140,200), p = [25 : 200] step 25, and p =

[25 : 200] step 40,

* For the non-stationarity analysis: ¢ = 10, § = 8/3,
po = (50,100,150), p; =6, =30, y=0.03, u =0.2
(as they appear in Equations 17 and 16).

For the datasets with multiple p and py values, 10 simulations
were performed for each value. As previously stated, the pa-
rameter values were chosen following the recommendations
in'® and’.

Parameter Influence Analysis Results

Recall that in this scenario, the performance of the models
was tested in scenarios where training was conducted using
data generated using fixed p parameter values and tested with
observations generated using different values for p. The val-
ues for the parameter were 25, 50, 140, 200, and a set in which
the observations were generated with the full range of values
[25, 200] in increments of 25. In this final scenario, 10 simula-
tions were performed for each p value. Additionally, models
were trained and tested with observations generated using p
values both inside and outside the chaotic region and chaotic
transitions, with increases and decreases of 10% and 20%, re-
spectligely. These regions were originally identified by Patel
etal.”®.

The results are shown in Tables V - VIII, and visually illus-
trated in Figure 5. Figure 5 shows the prediction performance
in terms of observed and predicted values for both models,
e.g., LSTM and LSTMTF over 500 and 2000 time steps. Here,
the training data were generated using a p value of 140 while
the testing data were generated with an increase of p +20%.
As observed, the predictions of the LSTMTF model remain
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TABLE II: LSTMTF MSE and SKL prediction performance with various sample rates for training and testing. This
experiment was performed over 990,000 data points and at each step the previous observed output value was fed as input.

Testing LSTMTF
Sample Rate 0.01 0.02 0.1 0.5
MSE SKL MSE SKL MSE SKL MSE SKL
0.01 0.000057  0.002072  0.000428  0.004020  0.021097  0.005559  0.076294  0.036720
%D 0.02 0000279 0009252  0.000071 0002532 0019940 0012317  0.076407  0.074320
E’ 0.1 0010545 0070649  0.010164 0081778  0.000323  0.009805  0.070399  0.178227
0.5 0.036476 0919100  0.032298  0.669868  0.031136 0406737  0.006140  0.195781

TABLE IV: Standard LSTM MSE and SKL prediction performance with various sample rates for training and testing. This
experiment was performed over 990,000 data points (100 simulations).

Testing Standard LSTM
Sample Rate 0.01 0.02 0.1 0.5
MSE SKL MSE SKL MSE SKL MSE SKL
0.01 0001980 0319153  0.004181 0450796  0.023820  2.430288  0.040091  1.468175
§ 0.02 0.007885  0.359545  0.001268  0.166016  0.023505  2.691661  0.046363  1.391035
E‘ 0.1 0.048826  0.640523  0.037939  0.502226  0.001038  0.076833  0.051433  1.357317
0.5 0013032  2.857927  0.012042 237178 0013619 1104351  0.005587  0.275596

consistent even when the behavior of the system is affected
due to changes in the parameter values. Moreover, examining
at the results in Tables V and VI it can be seen that the perfor-
mance of the model is not affected compared to the reference
values. In the case where the p values increased by 20% in
the testing data, the model outperformed the reference model.
In contrast, the standard LSTM model performance decreased
in both these cases, this was confirmed by all utilized met-
rics, not only compared to the LSTMTF model but also the
reference LSTM model.

Moving forward, Tables VII and VIII show the remainder
of the results. The numbers show the limits of the LSTMTF
model in terms of the values of the p parameters. For example,
when training p =25, all three metrics show a steady increase
with the values of p in testing. Compared to the other cases,
for p =25 the model exhibits the highest sensitivity to changes
in the test data. The models trained with p = 140 and p =200
obtained a lower sensitivity. Another interesting observation
is that when the model is trained with data generated using
a wider range of p values, the model performs better, even
compared to the reference model. This, again, is confirmed by
the metrics utilized. This could be explained by the fact that
in this scenario the training data size increased from 15,000 to
49,000 to encompass all p values.

Two points of discussion can be initiated from these results.
First, if the scope of the deployed models is to detect changes
in the functionality of the system, namely to increase the sen-
sitivity to changes, training with less parameter values can be
chosen. Second, if steady performance is desired over a larger
set of parameter values, without disruptions in functionality,

training the models with multiple parameter values is a pos-
sible approach. A possible scenario here is the decrease of
false alerts in a monitoring system due to expected changes in
parameters during normal conditions. Moreover, results con-
firm that training the model with multiple parameter values
can increase the prediction performance. However, as the re-
sults showed, in the case of the Lorenz system, the selection
of p values for data generation is crucial for the performance
of the models.

Non-stationarity Analysis Results

Figure 6 illustrates the observed and predicted values of the
LSTMTF model over 250 and 6000 time steps. The obser-
vations were generated using time-dependent p values as de-
scribed by Equation 17. Notably, the system behavior changes
compared to the case with fixed p values, as shown in Figure
4. In Figure 6, an observable upward trend is present, caused
by the dynamic p values. However, as shown in the figure, the
model prediction remains close to the observed values.

The results are further presented in Tables IX and X. In
Table IX, the model was trained with data generated using
various fixed p values and tested using time-dependent p val-
ues. As observed, when p was set to 25, the model yielded
the worst performance with MSE values of 0.203703, SKL.
values of 0.121628 and R” values of 0.834381. In particular,
when the p values increased for training, the performance of
the model improved considerably. For example, for p = 140,
the MSE values decreased to 0.000268, the SKL values de-
creased to 0.014870 and the R? values increased by more than
15% reaching 0.991480. In general, for both scenarios, the
second best performance was obtained when the models were
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FIG. 5: Prediction performance illustration of the LSTM and LSTMTF models with dynamic p = 140 +20% over 500 and
2000 time steps.

TABLE V: MSE, SKL and R? values for LSTM, LSTMTF with dynamic p values. The models are trained wih 15,000 data
points generated with p = 140 and tested with p £ 10% values in and outside of the chaotic region p = [126, 150].

Step p = 140+ 10% MSE SKL R?
LSTM 0.004398 0.458290 0.858050
LSTMTF 0.000079 0.001102 0.997437

trained with p values of 140, 200 and using a wider range
of values between 25 and 200. The best performances were
achieved by models trained with data generated using multi-
ple p values. Despite being trained on only four p values,
these models performed as well as, or even outperformed, the
reference models when handling unseen non-stationary data.
These results are confirmed using all the metrics and in both
testing scenarios. Table X shows the prediction performance
of the model on data generated using time-dependent p val-
ues, as described in Equation 17, with fixed pg values of 50,
100, and 150. Although the values of p are very different de-
pending on py the model performance is largely unaffected by
the different values of pg, with little or no change observed in
all three cases for all metrics (see Table X).

F. LSTMTF Gate Analysis Results

The parameters used for the generation of the data sets are
as follows: p =28, 0 =10, and 3 = 8/3.

LSTM Models Gate Activations Analysis Results

The results of this experiment are visually illustrated in Fig-
ures 7 and 8. Here, the gate values alongside the long- and
short-term memory values are shown over 3000 data points
from the testing set for four LSTM and LSTMTF cells.

As observed in the two figures, the range of gate values is
shorter for the LSTMTF model, ranging from 0.17 to 0.82. In
contrast, for the standard LSTM model, the gate values range
from 0.2 to 1. For example, the activations for the input gates
are often times saturated at 1. The same behavior is observed
for the long- and short-term memory values, e.g., the hidden



AlIP
é/_. Publishing

Enhanced LSTMs for Chaotic Systems Modeling 13

TABLE VI: MSE, SKL and R? and values for LSTM, LSTMTF with dynamic p values. The models are trained with 15,000
data points generated with p = 140 and tested with p &=20% values inside and outside of the chaotic region and chaotic
transitions p = [114, 166], as originally identified in'.

Step p = 140+20% MSE SKL R?
LSTM 0.003474 0.214538 0.805274
LSTMTF 0.000046 0.002678 0.997394

TABLE VII: LSTMTF prediction MSE values when trained and tested with observations generated with various values for p.

The testing [25:200] includes the values of p with increments of 25 in the [25,200] range. The model was trained with 15,000

data points for p = (25,90, 140,200). For p in the [25,200] range, the model was trained with 49,000 data points. The model
was tested with 990,000 data points for each p.

Train / Test p 25 50 140 200 [25:200]
25 0.000039 0.001763 0.477529 3.300690 0.565132
50 0.000016 0.000044 0.016334 0.096852 0.024754
140 0.000080 0.000111 0.000036 0.001187 0.000387
200 0.000115 0.000213 0.000215 0.000035 0.000392
[25:200] 0.000011 0.000016 0.000040 0.000059 0.000023

TABLE VIII: LSTMTF prediction SKL and R? values when trained and tested with observations generated with various values
for p. The testing [25:200] includes the values of p with increments of 25 in the [25,200] range. The model was trained with
15,000 data points for p = (25,90, 140,200). For p in the [25,200] range, the model was trained with 49,000 data points (1
simulation worth of data per p step of 40). The model was tested with 990,000 data points for each p value.

. 25 50 140 200 [25:200]
Train / Test p
SKL R? SKL R? SKL R? SKL R? SKL R?
25 0.001598  0.998747 0.030168 0.979292 1.743404 0.097873 3.867824 1.597241 0.784773 0.713122
50 0.005817 0.997570  0.002969 0.997607 0.232316 0.860230 0.964586 0.504762 0.142665 0.943082
140 0.127895  0.900972 0.062946  0.949082 0.002697 0.997343 0.156222 0.947693 0.027210 0.992328
200 0.196773  0.702921 0.102884 0.796366 0.087516 0.966984 0.003938 0.996723 0.040996 0.983817
[25:200] 0.003929  0.996322 0.004193 0.993764 0.009293 0.993721 0.004164 0.994526 0.000805  0.998805
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FIG. 6: Prediction performance illustration of the LSTMTF model with dynamic p values over 250 and 6000 time steps.
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TABLE IX: LSTMTF prediction MSE, SKL and R? values when trained with observations generated with various values for p.
The [25:200] includes the values of p with increments of 40 in the [25,200] range. The model was tested against data generated
using the time-dependent p parameter values as shown in Equations 16 and 17.

Testing p using Equation 16 Testing p using Equation 17

Training p

MSE SKL R? MSE SKL R?
25 0.203703 0.121628 0.834381 0.013371 0.201872 0.909006
50 0.011142 0.054469 0.958965 0.000277 0.010149 0.991459
140 0.000268 0.014470 0.991480 0.000259 0.066388 0.931208
200 0.000358 0.023590 0.976382 0.000199 0.124269 0.889596
[25:200] 0.000079 0.000802 0.995577 0.000021 0.002315 0.990015

TABLE X: LSTMTF prediction SKL and R? values when trained and tested with observations generated with time-dependent
p using the sin() function. The model was trained with 49,000 data points for p = 25,65, 105,145, 185 and tested with 990,100
data points for each experiment with pg values of 50, 100 and 150.

po =50 po = 100 po = 150

Train / Test p
MSE SKL R? MSE

SKL R? MSE SKL R?

[25:200]/ 40 0.000023 0.002731 0.989036  0.000023

0.002908  0.989072  0.000023 0.002722  0.989023

and cell Istate. For the standard LSTM model the values range
from -3 to 2 while for the LSTMTF model, from 0 to 1.8.
Additionally, the shape of the hidden state signal, which is the
cell output, closely resembles the actual observed output in
the case of the LSTMTF model.

A closer analysis of Figures 7 and 8 reveals that, depend-
ing on the gates, for the LSTMTF model, the signal values are
in antiphase with the observed signal. This is clearly visible
at the 1500th time step in Figure 8. For the input gate, three
cells follow the same shape, while one cell is in antiphase.
Similarly, in the case of the forget gate, three cells are in an-
tiphase. In the case of the output gate, the signal values in
three cells follow the same shape as the observed values. An-
other aspect worth noting is that, more visible in the case of
the LSTMTF model, the cell activation values for the input,
forget, and output gates tend to be either above or below the
actual values, averaging to the observed signal values. An in-
teresting observation is that, in the standard LSTM model, the
gate activation values appear to be independent of each other,
while in the LSTMTF model, all cells seem to exhibit similar
behaviors, sometimes in antiphase. However, it is particularly
intriguing to observe and analyze the behavior of these black-
box models at the gate level.

LSTMTF Gate Modifications Analysis Results

The results of the second set of experiments are numeri-
cally shown in Table XI, where the previously observed out-
put value is fed as an additional input only to certain LSTMTF
gates. In Table XI, this was indicated with “gates affected* as
the gates are not disabled, but rather a column of the weight
matrices is removed. For this experiment, noise-free variants
of the datasets were used for both training and testing. The
training dataset includes 15,000 observations, while the test-
ing set consists of 100 simulations, totaling 990,900 observa-

tions.

A first observation that can be drawn from analyzing the re-
sults table is that the additional input must be fed to at least
the cell candidate gate. The worst results are obtained when
this value is removed from this gate, or in combinations con-
taining this gates. For example, the SKL values were higher
for the subsequent combination of gate input-cell, forget-cell,
cell-output, input-forget-cell, input-cell-output, and forget-
cell-output gates.

Conversely, considering both metrics, MSE and SKL, the
performance of the model remains closely similar when the
previously observed output value is not fed into the input, for-
get, output, and the combination of input-forget-output gates.
For example, in terms of MSE, when the input gate was af-
fected, the model performed better than the reference model,
with values of 0.000036 compared to the reference value of
0.000057. Similar behavior is observed for the combination
input-forget-output. Interestingly, when the input gate is af-
fected, an increase in performance is observed when measur-
ing SKL and R? with a value of 0.001683 and 0.998509 com-
pared to the reference value of 0.002072 and 0.998056.

In realistic scenarios, not feeding the previously observed
output value to certain gates has the advantage of reducing the
complexity. For each LSTM cell, for each gate, this translates
to reducing each weight matrix by one column. As observed
in the previous tables, for each cell, there are cases where the
additional input is only required in one gate. Furthermore,
if model training is performed on devices with an increased
computational capability, reducing the complexity of the mod-
els during inference can be advantageous if such models are
deployed on embedded devices.

Overall, the best performing architectures considering all
the metrics are the models in which the input, forget, out-
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TABLE XI: LSTMTEF testing MSE, SKL, and R? values with the gates affected and disabled. Metrics are computed over
990,000 data points (100 simulations) from the testing set.

Gates Gate Affected Gate Disabled
MSE SKL R? MSE SKL R?

Ref LSTMTF 0.000057 0.002072 0.998056 0.000057 0.002072 0.998056
Ref LSTM 0.001726 0.201782 0.941223 0.001726 0.201782 0.941223
Input 0.000036 0.001683 0.998509 0.000037 0.000801 0.998734
Forget 0.000057 0.001994 0.998048 0.000293 0.001754 0.990021
Cell 0.000047 0.001942 0.998373 0.000289 0.002481 0.990146
Output 0.000066 0.003040 0.997723 0.000051 0.001720 0.998241
Input, Forget 0.000043 0.001518 0.998511 0.014440 0.525202 0.508293
Input, Cell 0.000069 0.003947 0.997647 0.029368 inf -1.633756
Input, Output 0.000051 0.001833 0.998248 0.000084 0.004254 0.997129
Forget, Cell 0.000079 0.003505 0.997297 0.000304 0.001204 0.989643
Forget, Output 0.000047 0.001520 0.998398 0.256552 4.868235 -7.735846
Cell, Output 0.000055 0.003639 0.998093 0.000447 0.010622 0.984761
Input, Forget, Cell 0.000115 0.006507 0.996060 0.029368 inf -1.633756
Input, Forget, Output 0.000052 0.002085 0.998225 0.074341 0.029408 57.24442
Input, Cell, Output 0.000169 0.012539 0.994219 0.029368 inf -1.633756
Forget, Cell, Output 0.000068 0.009677 0.997669 0.029485 inf -0.004001

put, and input-forget-output gates were affected. These archi-
tectures are selected as candidates for the next experiments,
where the performance will be tested under various condi-
tions.

LSTMTF Gate Disabling Analysis Results

In this scenario, different combinations of cell gates were
disabled. The results in terms of MSE, SKL, and R? are
shown in Table XI. Furthermore, Figure 9 illustrates the ob-
served and predicted values of the LSTMTF model with the
disabled gates over unseen 500 data points. For this exper-
iment, noise-free variants of the datasets were used for both
training and testing. The training dataset includes 15,000 ob-
servations, while the testing set consists of 100 simulations,
totaling 990,900 observations.

An important observation can be drawn from Table XI,
specifically the anomalous results in various combinations in-
volving the cell candidate gate. In nearly all experiments
where the cell candidate gate was disabled, the predicted val-
ues remained constant, leading to similar MSE values and
anomalous results across other metrics. A similar pattern was
also observed in the previous set of experiments, indicating
that the cell candidate gate appears to be the most critical ele-
ment for now.

The results show that the gates can be individually disabled
without significant variations in performance. For example,
disabling the input gate yielded better MSE values, decreasing
from 0.000057 to 0.000037 while the SKL values decreased
from 0.002072 to 0.000901. Similarly, the R? values improved
from 0.998056 to 0.998734. The only gate that yielded worst

SKL values when disabled was the cell candidate gate.

Mowing forward, the best combination of two disabled
gates was the input and output. In this scenario, the MSE val-
ues increased from 0.000057 to 0.00084, while the SKL val-
ues increased from 0.002072 to 0.004254. In terms of R? val-
ues, this combination of gates yielded a small decrease from
the reference value of 0.998056 to 0.997129. Although this
study analyzed every possible scenario, including cases where
three of the four gates were disabled, as shown in Table XI,
most of the results were anomalous. Moreover, in a realis-
tic scenario, the disablement of three gates effectively reduces
the LSTM to a simple recurrent model, breaking the purpose
of the gating mechanisms.

Considering all the results from this set of experiments,
across all metrics and scenarios, the following candidates have
been selected for further experimental assessment: models
with the input, forget, output, and input-output gates, disabled.

V. REDUCED LSTMTF ARCHITECTURE RESULTS AND
DISCUSSIONS

In the final set of experiments, a new potential LSTMTF
architecture is tested and validated using the results from sub-
section IIIE as input. To validate the new architecture, the
experiments of subsections III C and III D are applied to these
new configurations.
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FIG. 9: Prediction performance illustration of the LSTMTF model over 500 samples from the unseen testing set with gates
disabled during training and testing. In the figures i = input gate, f = forget gate, ¢ = cell candidate gate.

A. Results

The candidates for this set of experiments are the models
that achieved the best results in the gate analysis section, as
illustrated in Table XI. The list of candidates includes the
following:

1) Models with the following gates affected (e.g., the pre-
vious output feedback disabled in the gate): Input (I),
Forget (F), Output (O), and a combination of Input-
Forget-Output (IFO).

ii) Models with the following gates disabled: Input (I),
Output (O), Forget (F), and Input-Output (10).

Table XII shows the results for the previous set of exper-
iments performed on the candidates described above and the
reference model. In terms of affecting gates, specifically feed-
ing the previously observed output value to only certain gates,
the results illustrate that most of the architectures obtained
similar results to the reference model. When this previously
observed output value was fed only to the cell gate, there was
an increase in MSE and SKL for the parameter influence ex-
periments (column E4). In the scenario where the system
parameters were not affected (column El), all models ob-
tained similar results, showing that under normal operating
conditions, the complexity of the LSTMTF model can be re-
duced without sacrificing performance. Similar results were
obtained for the forecasting, sample rate, and non-stationarity
experiments. For the forecasting experiment, the worst re-
sults in terms of SKL were obtained when the output gate was
affected, with an increase from 0.515222 to 0.796256. In ad-
dition, when the sampling frequency was changed (column
E3), the same behavior was observed for all models, without
significant performance variations. Overall, the results reveal
that with the forget gate affected, the results remained close to
the reference model.

In the scenario where the LSTMTF gates were disabled,
similar results were obtained for the noise effects set of ex-
periments. Even with two disabled gates, Input and Output,
the models outperformed the reference model. As shown in
Table XII, for the forecasting, sample rate, parameter influ-

ence, and non-stationarity experiments a small decrease in av-
erage performance was observed mainly in SKL values. For
the forecasting, sample rate, and parameter influence exper-
iments (columns E2, E3 and E4) the model with the forget
gate disabled obtained the worst SKL values. In contrast, the
model with the input and output gates disabled obtained the
best SKL scores and similar MSE values for the first scenario,
as shown in column E1 of the same table. Overall, the results
indicate that deactivating the input gate had less impact on
model performance compared to other gates. In fact, without
the input gate, the model performed better, as demonstrated
in columns E1 and E2 for both the noise and forecasting ex-
periments, outperforming even the reference model and the
models with other gates disabled.

An interesting result concerns the disabled forget gate,
where in some experiments, the performance of the models
was severely impacted (columns E2, E3 and E4). Greff et al.!?
obtained similar results for the LSTM classification of speech
and handwriting recognition, and music modeling, confirming
the necessity of the forget gate in multiple scenarios, including
chaotic system modeling.

Taking into account the results of the previous sections, the
results of Table XII, and the recommendations from the re-
sults sections, the following new LSTMTF architecture is pro-
posed and evaluated. An LSTMTF with the input gates com-
pletely disabled and forget gate affected (without feedback).
A visualization of the cell architecture is shown in Figure 10.
To evaluate and validate this new model, the previous exper-
iments are repeated, as illustrated in Table XII and presented
in the previous sections.

The results for this new architecture are shown in Table
XIII. As seen in the table, this new proposed architecture
obtained similar results to the reference model for almost all
experiments. The only experiment where this architecture per-
formed worse than the reference model is the parameter influ-
ence scenario in terms of MSE and SKL values. For the non-
stationarity set of experiments, the model yielded results sim-
ilar to the reference model and outperformed the other archi-
tectures analyzed (see column ES in Table XII). Noise effects
analysis revealed that this new architecture performed simi-
larly to the reference model, with slightly better SKL scores
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TABLE XII: The LSTMTF prediction MSE and SKL mean values for the best-performing candidates selected from previous
experiments. Affected = The extra input disabled in that specific gate. Disabled = The entire gate is disabled. E1 = Noise
experiment, E2 = Forecasting experiment, E3 = Sample rate experiment, E4 = Parameter influence experiment, ES =
Non-stationarity experiment.

. E1l E2 E3 E4 ES5
Candidates
MSE SKL MSE SKL MSE SKL MSE SKL MSE SKL
2 Ref. 0.000047 0.001722 0.017127 0.515222 0.024503 0.167421 0.000029 0.004476  0.000050 0.001558
ES 0.000048 0.001593 0.032902 0.645875 0.025343 0.167891 0.000077 0.005481 0.000051 0.001914
=)
*f) F 0.000050  0.001900 0.017205 0.641606 0.025541 0.171307 0.000073  0.004903  0.000055 0.002091
[}
S (0] 0.000053 0.002122 0.019896 0.796256 0.025524 0.188275 0.000085 0.005325 0.000055 0.002103
IFO 0.000048 0.001824 0.030023 0.657557 0.024939 0.175496 0.000076  0.007075 0.000054 0.001919
. E1l E2 E3 E4 ES5
Candidates
MSE SKL MSE SKL MSE SKL MSE SKL MSE SKL
2 Ref. 0.000047 0.001722 0.017127 0.515222 0.024503 0.167421 0.000029 0.004476 0.000050 0.001558
'CE 0.000032  0.000987 0.011473 0.745007 0.025302 0.228768 0.000092 0.018285 0.000059 0.002424
a F 0.000032  0.001023 0.023976 1.390861 0.052182 1.042909 0.041156 14.54777 0.000106  0.003008
[}
S (0] 0.000032  0.001076  0.250687 2.750450 0.034132 0.423908 0.000076  0.027906  0.000060 0.002562
10 0.000033  0.000970 0.015692 0.981150 0.050588 0.942535 0.000291 0.101289 0.000116  0.003870

TABLE XIII: The LSTMTF prediction MSE and SKL mean values for the proposed LSTMTF architecture with the input gate
disabled and the forget gate affected. Affected = The extra input disabled in that specific gate. Disabled = The entire gate is
disabled. E1 = Noise experiment, E2 = Forecasting experiment, E3 = Sample rate experiment, E4 = Parameter influence
experiment, E5 = Non-stationarity experiment.

E1l E2 E3 E4 ES5
MSE SKL MSE SKL MSE SKL MSE SKL MSE SKL
Ref. 0.000047 0.001722 0.017127 0.515222  0.024503 0.167421  0.000029  0.004476  0.000050 0.001558
New LSTMTF 0.000051 0.001063 0.017167 0.676256 0.026140 0.238532 0.000089 0.013964 0.000052 0.002181
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FIG. 10: Ilustration of the new proposed architecture, with the input gate disabled and the previously observed output value fed
only to the cell candidate and output gates.
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and similar MSE values. In general, this new LSTMTF cell
architecture outperformed the other models, as shown in Ta-
ble XII and performed equally well to the reference LSTMTF
model, with all four gates active, and full feedback from the
previous observed output value. This final set of evaluations
demonstrated the capabilities of the proposed model, illustrat-
ing that the LSTMTF architecture can be reduced whilst main-
taining performance for MISO non-linear systems modeling.

B. Extended Evaluation Results

For additional validation, the standard LSTM, LSTMTEF,
and reduced LSTMTF model were also tested on a dataset
generated using the Rossler system3®. The Rossler system (or
Rossler attractor) is defined by a set of three differential equa-
tions with three parameters, as shown in Equation 25, that de-
scribe a continuous-time system with low-dimensional chaos
and unbounded dynamics.

L y—x

ar

d

%:xﬁ-ay (25)
d

d—j:bJrz(xfc).

This dataset was generated using the same methodology de-
scribed in Section III B, similar to the approach used for the
Lorenz case. As shown by Cetin et al.>°, with the parameters
a=0.2, b=0.2, and c values above 4.2, the Rossler system
transitions to chaotic dynamics. Consequently, for this set of
experiments, the Rossler system was simulated using ¢ values
over 5 and in the range [5,45], as done by others**#2. The
training dataset consists of observations generated with c val-
ues incremented by a step of 20 within this range, while the
testing dataset is created using c values from the same range
but with a step size of 5. Similarly to the Lorenz system, x and
y were utilized as inputs, while z was used as output. More-
over, the standard LSTM, LSTMTE, and reduced LSTMTF
hyperparameters used for the Lorenz system were similarly
applied here.

TABLE XIV: LSTM, LSTMTF and reduced LSTMTF
performance comparison on the Rossler system dataset.

reduced LSTMTF LSTMTF LSTM
MSE SKL MSE SKL MSE SKL
0.000002 0.040502 0.000002 0.039804 0.000846 0.949058

The results, as shown in Table XIV, illustrate the perfor-
mance of the three models, standard LSTM, LSTMTEF, and the
reduced LSTMTF on the Rossler system testing dataset. As
observed, the reduced LSTMTF model yields promising re-
sults further highlighting its effectiveness in various settings,
not just on the Lorenz system.

19
C. Complexity Analysis

According to the original LSTM paper and other re-
lated studies?>*?, the computational complexity of the LSTM
model per time step, per weight, is (1), indicating that this
model is local in space and time. Consequently, the overall
complexity per time step is &' (w), where w is the number of
model parameters, including weights and biases. When we
extend the complexity with the number of observations N and
the number of epochs k, the complexity becomes &'(w-N - k).

Consider a system with m measured signals, m — 1 signals
are used as inputs and 1 signal as output. For the standard
LSTM model, the number of parameters wy sty is computed
as the product of the number of gates and the sum inputs m — 1,
multiplied by the number of hidden units H, plus the square
of the hidden units H? (e.g., hidden to hidden connections),
and the bias term for the gate bgy.. Additionally, the num-
ber of hidden units that are connected to the output and the
bias term for the output neuron are added to the product. The
computation of wy gty is shown in Equation 26.

wistm = Gates X [(m—1) x H+H? + byace|
+ Hout + bout~ (26)

For the LSTMTF model, the number of parameters wystmTE
is computed as follows:

wrstmtE = Gates X (m x H +H2 + bgate)
+ Hout + bout.- 27

In Equations 26 and 27 the number of gates is 4. Next, for the
reduced version of the LSTMTF model, by eliminating the
input gate and removing the feedback to the forget gate, the
number of parameters Wyegyced LSTMTFE 1S computed as:

Wreduced LSTMTF = (Gates - 2) X [Wl xH +H2 + bgate]
+ [(m_ 1) X H+H2+bgate]
+ Hout + Dou- (28)

Consider the architecture of the models utilized in this pa-
per: LSTM, LSTMTF, and reduced LSTMTF. The models
feature 32 hidden units with 2 or 3 inputs and a single output.
Utilizing the computation methods presented in Equations 26
- 28 results in 4513 parameters for the standard LSTM, 4641
parameters for LSTMTEF, and, finally, 3457 parameters for
the reduced LSTMTE. Compared to the standard LSTM, the
computational complexity of the LSTMTF model increases
by 2.84%. In contrast, the reduced LSTMTF model achieves
an 30.54% reduction in computational complexity relative to
the standard LSTM and 34.24% relative to LSTMTE. Never-
theless, as shown in Tables XI and XIV, both the LSTMTF
and reduced LSTMTF models demonstrate up to ~ 99.76%
error reduction compared to the standard LSTM in terms of
both MSE and SKL.

Regarding spatial complexity, the LSTM model is charac-
terized by the number of parameters and initial states. This
can be expressed as a spatial complexity of &'(w+|s|), where
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s represents the vectors of initial states, which remain constant
regardless of the LSTM variant used. Typically, |s| is equal to
2H (for the cell and hidden states). Based on these consider-
ations, it becomes obvious that the reduced LSTMTF model
offers an advantage in terms of spatial complexity, in addition
to the previously demonstrated performance improvements.

D. Discussions

The results, as shown in Table XIII, illustrate the utility and
efficiency of the models with a reduced architecture as fol-
lows. If such models are employed for anomaly detection or
monitoring tasks, the overall increase in the prediction resid-
uals, as shown when measured with both metrics (e.g., MSE
and SKL), can be useful. As the parameters of the system
change and, consequently, the behavior of the system, the pre-
diction residuals also increase. This is useful when designing
a detection system that monitors any changes or deviations
from the normal operating conditions, as the ones proposed
in?#. This can be observed in Table XIII under columns E4
and E5. Conversely, if parameter changes are expected or oc-
cur naturally, retraining might be necessary, or the initial train-
ing may need to include a larger data pool that encompasses
multiple parameter values, see Tables VII, VIII and IX.

Alternatively, as shown in column El in Table XIII, even
with the addition of noise, which can occur naturally with
real-life measurements, the performance of the model is not
negatively affected. Regarding the longer-term forecasting or
sample rates change during inference, the performance is only
slightly affected, as illustrated in XIII, in columns E2 and E3.

In general, the final experimental assessment demonstrated
that the LSTMTF architecture can be simplified without sac-
rificing performance. This reduction in complexity naturally
decreases the time and space requirements of the models,
which is particularly beneficial for the implementation of de-
vices with limited computational resources, such as the ap-
proach from”, or when used in ensembles that encompass
a large number of models. It also highlighted some limita-
tions and the need for additional retraining, or more inclusive
training datasets. It is worth mentioning that this study an-
alyzed only regression approaches for nonlinear chaotic sys-
tems, and these results might not highlight the performance of
such models for other tasks, including classification or natural
language processing.

The main scope of this article was to explore LSTM vari-
ants for chaotic system modeling, with the main focus on
LSTM architectures. Nevertheless, the authors acknowledge
the existence of other similar gated architectures in the liter-
ature e.g., the Gated Recurrent Unit (GRU)®. Since GRUs
were originally proposed, a multitude of studies focused on
performance comparisons between LSTMs and GRUs in a
wide variety of domains*®#°. Some of these studies showed
slight performance improvements that favor both architectures
in various contexts. However, Bengio Yosua, one of the coau-
thors of the original GRU paper, investigated the performance
of LSTMs and GRUs in°°. The results of this study illustrate
the superior performance of gated architectures compared to
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simple RNNs, but no definitive conclusions were reached re-
garding which model is better. For now, this remains an open
question and an interesting possibility for future exploration.

Today, we live in the age of Transformers’!, where
Transformer-based approaches and pre-trained models are
considered the state-of-the-art. Although transformers dom-
inate the fields of natural language processing, speech
analysis®>>3 and text classification®*, various studies re-
veal that simpler models, including LSTMs, obtain bet-
ter results®>’. For example, in’’ the authors introduce
simple one-layer linear models and demonstrate how these
approaches surprisingly outperform existing sophisticated
Transformer-based models, often by a large margin. This was
also observed when Transformers were utilized for fault and
anomaly detection®®. In this study, the authors tested vari-
ous supervised attention-based architectures and found that
Transformers generally underperformed compared to LSTMs

in most experiments.

VI. CONCLUSIONS

This paper analyzed the modeling performance of an en-
hanced LSTM-based architecture which utilizes the previ-
ously observed output value as an additional input, for MISO
chaotic systems. In this direction, an extensive experimental
assessment was performed, including LSTM cell gate analy-
sis, noise effects, sample rate change, parameter value drifts,
and long-term forecasting capabilities. The experimental as-
sessment mainly focused on the Lorenz system while for ad-
ditional validation, the evaluation was extended to the Rossler
attractor. The enhanced LSTMTF variant yielded promising
results, surpassing the capabilities of a standard LSTM model,
even with a simple single hidden layered architecture. Addi-
tionally, a new reduced LSTMTF architecture is presented,
which includes only three gates, with the input gate removed
and output feedback not applied to the forget gate. The valu-
able results of this study can be utilized to deploy simple and
efficient models with promising capabilities, including low
sensitivity to noise. The results also illustrate the model’s
robustness to system parameter changes and non-stationarity.
Additionally, as revealed by an extensive analysis, the pro-
posed enhanced LSTMTF variant can be successfully utilized
for both short- and long-term forecasting, even in the pres-
ence of missing values. In a nutshell, this paper remains a
large-scale study on LSTMs utilized for chaotic systems mod-
eling and closes an existing gap in the direction of in-depth
LSTM-based performance and architectural analysis. As re-
vealed by the experimental evaluation, a simplified, less com-
plex, architecture can be successfully utilized without always
requiring the use of complex deep learning methodologies. To
enhance the experimental evaluation, computational and spa-
cial complexity analysis were computed for three models i.e.,
standard LSTM, LSTMTEF, and the reduced LSTMTF. Future
work directions include the analysis of various other applica-
tions, including dynamical chaotic systems, and the develop-
ment of independent and ensemble-based anomaly detection
techniques specifically designed for these types of systems.
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